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Seeing Is Not Always Believing 

Loi Nguyen (student) 
Tu Tran (student) 

University of North Florida 

Many years ago, Loi was asked the geometric conjecture below. He could 
not determine its validity until he took a geometry course at the University of 
North Florida. 

Conjecture: Let MN and PQ be two perpendicular diameters in a circ~e ,...,·ith 
center O, and A, B be two points on MOonON such that MA = OB. IflmeBQ 
intersects the circle at C, then L CAQ is a right angle. 

Let us consider two special cases: 
I. A coincides \\ith M. Then C coincides with P, and L PMQ is a right 

angle. 
2. A coincides "'ith 0. Then C coincides with N, and L NOQ is a right 

angle. 
In other cases, if a protractor is used to measure the angle, it always appears to 
have measure 90 o. 

Surprisingly, we are going to prove that the conclusion in the conjecture 
above is not correct although it seems true. Our method combines geometry, 
trigonometry, and calculus together. The correct conclusion of the conjecture 
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should be: f. CAQ is an angle with measure between 90° and approximately 
88.21 o. Since 88.21 o is so close to 90°, the naked eye can hardly find the 
difference. 

Now let us turn to the proof. Let MA = OB = d, the radius of the circle be 
r, CB =a, BQ = b, f. CAB=~, and f. BAQ =a. Since CQ, MN are two chords 
of a circle, 

CB · BQ = MB · BN, 
or ab = (r + d)(r - d) = r - J2. 

Since c:. BOQ is a right triangle, we have 
b2 = r+<f. 

Hence alb = (r - <f)l(r +<f). 
Find the point D onMN so that CD j_ MN . Since 6 BDC - 6 BOQ, we 

know 

Hence, 
BD/a = dlb, CD/a =rib. 

BD = d(alb) = d(r - <f)/(r + cf), 
CD= r(a/b) = r(r - cf)/(r + cf). 

It is easily seen that 

and 
tan a= rl(r- d)= l/(1 - (dlr)), 

tan~= CD/AD= CDI(r + BD) 
= [r(r- <f)/(r + cf)]/[r + d(r - cf)/(r + cf)] 
= r(r - cf)![r(r + cf) + d(J.2 - cf)] 
= [1 -(dlrf] I [1 + (dlr) + (dlr)2

- (d!r)3 
]. 

Let x = d!r. Then 0 s: x s: l, and 
tan a= ll(l - x), 
tan~= (l - _x2)/(} +X+ r - ~), 

tan( a+ B)= (tan a+ tan B)/(1 - tan a tan B) 
= (l/(1- X) +(I- r)/(l +X+ r- ~)]/(1- (1/(1- x)j[(l- r)/(1 + x+ r- ~)]] 

= 2/(r(l - x)2
). 

Letj{x) =tan( a+~)= 2/(r(l - x)2
). Then f'(x) =- 4(1 - 2x)l(x- x2)J 

If 0 < x < l/2, then f'(x) < 0; hence,j{x) is decreasing on (0, 1/2). If 
112 < x < I, then f'(x) > 0; hence,.f{x) is increasing on (112, 1). Therefore 
x = l/2 results in a minimwn value ofj{x). 
It is easily seen that 

./{112) = 2/[(l/4)(1/4)] = 32. 
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The minimmn value of the angle f. CAQ is: 
arctan./{112) = arctan(a +B)= arctan 32 ~ 88.210089°. 

The follo\\ing are some values from which one can see that L CAQ is very close 

to 90°. 
X= l/3 
x= 114 
X= l/5 

./{113) = 81/2 
j{l/4) = 512/9 
j{ l/5) = 625/8 

arctan(8l/2)"' 88.5855770° 
arctan(512/9) ~ 88.9929510° 
arctan(625/8) "' 89.266654 o. 

Acknowledgment. We thank Professor Jingcheng Tong and the referee for 

their guidance in preparing this article. 
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Integral Functions Whose Right Derivatives 
Are Average Values Of Periodic Functions 

Paul Fishback 
Nicholas Ceglarek (student) 

Tobias Moleski (student) 
Grand Valley State University 

One of the most beautiful results in mathematics is the first fundamental 
theorem of calculus. Recently, several articles ([I], [2], [3), and [4]) have 
focused on an interesting class of highly-oscillatory functions that do not satisfy 
this theorem's hypotheses. To be in this class, a function/must 

(a) be defined and bounded on the interval [0, I]; 
(b) be continuous on (0, 1 ]; 
(c) have the property that limx~o· j{x) does not exist. 
Because f is bounded on [0, 1 ], where it has a single discontinuity, the 

Riemann integral J0.~./(t)dtexists for every x E [0, lJ. However, whether this 

integral is right-differentiable at the origin, i.e. whether 

lim..!_fcxj{t)dl 
x~o· X o 

exists, cannot be answered on the basis of properties (a)- (c) alone. 

Steve Ricci, for exantple, has shown ((4]) that if 

./(x)=tin( ;) if O<x 

I if X = 0 
(1) 

then 

. I J" A hm- j(t)dt • 0. 
,. •0" X 0 

John Klippert ([3 ]), on the other hand, has shown that when In x replaces ..!.. 
X 
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in (I), limx~o·..!.. r xf{t)dt does not exist. The fact that these outcomes are 
x Jo 

different has been explained in terms of the different growth rates of the 
derivatives of llx and In x near the origin ([ 1 ]). 

Other examples of functions satisfying (a)- (c) can be created simply by 
replacing the sine function in ( 1) by some other continuous, periodic function g. 
For some such choices of g, e.g. g = cos, an easy adaptation of Ricci's argument 
establishes that 

lim ..!. r xj(t)dl 
x~o· xlo 

exists. 

For other choices, however, the outcome is not so clear. One such example 
is g = lsinl. In this case experimentation with a computer algebra system 
suggests that 

lim! 1 xj{t)dt~ .63662. 
x~o· X 0 

The following theorem, which uses integration by parts and properties of infinite 
series to establish a general result for all continuous, periodic functions g, 
demonstrates that this limit is 2ht the average value of !sin! over one period. 

Theorem: Suppose g is a continuous periodic function on the real line, 
whose period is denoted by 't. Then 

lim.!. rxJ ..!.)dt=..!. ftg(s)ds. 
x~o·x1o 5~1 'tJo 

Proof: By a simple change of variable, the limit in question may be 
rewritten as 

Consider first the special case A.= N't, where N is a positive integer. By the 
periodicity of g, 



694 PI MU EPSILON JOURNAL 

=Nt t fT g(s) ds. 
JeN Jo (s +jt)2 

Integration by parts applied to the integral inside this series, together with 
the continuity of g, yields 

e g(s) ds = I ft g(s)ds + ft 2 ( ( s g(t)dt) ds 
lo (s+fc)2 -r2(1 +j)2lo lo (s+j-r)3 Jo 

= g(s)ds +a - . 1 i' ( 1 ) 
-r2o + ;Y o 13 

Hence, 

lim '), (" g(s) ds =lim Nt t roT g(s) ds 
>.-., h s 2 N~"' J=N J, (s +j-rf 

= lim Nt t ( I (' g(s)ds +a(_!_)) 
N~" J=N 't2(1 +})2 Jo j3 

=lim N('t-1 
(.!.. rt g(s)ds) +a(..!..)) . 

N~., j=N (1 +j)2 't Jo j 3 

i-.. I .. 1 
Since lim N ~ -- = 1 and lim NE - = 0, the result 

N~., j=N ( 1 + j)2 N~oo j=N j 3 

follows for this special case. 

For the general case, denote N.. = [ ~] , the greatest integer less than or 

A. equal to - . Then 
't 
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If M denotes the maximmn of jgj, then the first of these two integrals is bounded 
in absolute value by 

w(;,t- ±) ·1:.,- I) 
Since lim ~ = I, lim ~ = 1, which implies that the first integral 

x~.. [x] >.~.. N>.-r: 

approaches zero as A approaches infinity. The second integral is the same as 

~(N .. -r (" g(s) ds), which, by the special case, approaches.!.. f'g(s)ds as 
N>.t JNAt s 2 -r Jo 

A approaches infinity. This completes the proof. 0 

Of course, if g is merely a continuous, bounded (but not necessarily 
periodic) function defined on the real line, then 

j{x) = fJ ~) if O<x!> I 

l \ if x=O 

satisfies conditions (a)· (c) as well. Does lim .!.. J: xf{t)dt always exist in this 
more general case? x~o· x 0 

The answer to this question is no. To see why this is so, choose any 
sequence of positive numbers {a"} that increases to infinity quickly enough so 
that . a, 

hm -=0. 

Now construct a bmmded, continuous function g that satisfies the following 
properties: 

(I)g(x) = 0 ifx E [0, ad or ifx E [a, a,.d for some even valueofn; 
(2) 0 < lg(x)j5: I ifx E(a", a,. 1) for some odd value ofn; 
(3) g(x) = g(-x), and g is continuous on (-co, co); 
(4) ifn is odd, 
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la,.Jg(~) ds -ja,•lg(~) < _1_. 
a, s a, s an+l 

Such a bounded, continuous function can be constructed by using a piecewise· 
linear function. For example, g might have a graph that looks like Figure 1: 

I \ I \ 
FIGURE 1 

Now consider 

a 
Since 181 ~ 1, the second of these two integrals is bounded by-" , and hence 
goes to zero as n - oa. an+l 

The first integral tends to two different limits depending upon whether n is 
even or odd. lf n is even, the integral equals zero by ( 1 ). lf n is odd, the same 
integral can be rewritten as 

= a, (J.a•·t g(s) ds - ja,·t _!_dsl a, s2 a, s2 

= a, (fa, .• g(s) ds - ja,·t .!.ds) a, s2 a, s2 

By (4) 

1 
+ a J.a,·t -ds 

n a, s2 

+(1-~). 
a,.t 
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a 
Using again the fact that -" tends to zero as n - oa, we obtain 

a, .. t 

lim a J.a,•t g(s) ds = 1. 
n 2 

n~ ... 11 odd a, S 

Hence 

lim .!. rx J !) dt =lim ~ .. g(:) ds 
x~o· X J 0 

6~ t >..~.. >.. s 

does not exist for this particular bounded, continuous function g. 

Referentes 
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On J acobians in Multiple Integrals 

Prem N Baja} 
Wichita State University 

In change of variables for double or triple integrals, the JacobianJ of the 
transformation is, generally, either non-negative or non-positive on the entire 
region of integration. Consequently students do not give consideration to the 
absolute value sign present in the change of variables formula (except perhaps 
to makeJ positive if J is non-positive on the region of integration). However, 
the JacobianJ may be both positive and negative on the region of integration. 
In such cases the integral needs to be evaluated separately on the regions where 
J is positive and negative. It is one of such cases that we consider. 

We are interested in evaluation of the integral 

I=JJR Jx 2 
+ y 2 dA whereR is the region {(x,y): (x- 1)2 

+ y 2
::;; 1 }. 

Consider the following "solution". In polar coordinates, the region can 
be described as 

{(r,9) : r = 2cos9 , 0 ::;; 9 !> 1t }. 

Using the transformation x = rcos9, y = rsin9 we obtain 

I = ( 11 f 2
cose r·r drd9 = rn _! cos39 d9 = 0. 

Jo o Jo 3 

Since the integrand is positive for all ( x ,y) "" ( 0, 0) andfis continuous 
on R, the integral cannot vanish. What went wrong? 

The region R in the x-y plane transforms to the region D in plane 0-r 
plane where Jacobian, J, of the transformation takes both positive and negative 
signs. Indeed r is positive for 0 ::;; 9 < 7t/2 and negative for7t/2 < 9 ::;; 1t. The 
correct integrand, in the preceding double integral, according to the change of 
variables formula, is given by r · I rl ; consequently the integral is to be 
evaluated separately on regions D1 and D2 (see figure). We leave it to the reader 
to check that the value of the integral is 32/9. 

Acknowledgment. The author is thankful to the referee for helpful comments 
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on the earlier Yersion of this note. 

r 
r= 2cos9 

A 

9 

c 

Figure 

Here points A, Band C correspond, respectively, to 9 = 0, ~ and 7t. 
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residual term 2c(log x)112 is denoted by ~(x) . The author is indebted to Dr. 
Peter G. Anderson of the Rochester Institute ofTeclmology for the computations 
of j{x); these were subsequently checked by the anonymous referee using 
Mathematica and found to contain very minor discrepancies. The corrected 
values have been incorporated in Table I. 

TABLE 1 

!!1. !l !!5} IU£l ..&l M!l 
3 6 168 178 177 13 
4 9 1,229 1,246 1,247 15 
5 11 9,592 9,630 9,630 17 
6 13 78,498 78,628 78,628 19 
7 16 664,579 664,918 664,919 20 
8 18 5,761,455 5,762,209 5,762,210 22 
9 20 50,847,534 50,849,235 50,849,235 23 
10 23 455,052,511 455,055,615 455,055,615 24 
11 2_5 4,118,054,813 4,118,066,401 4,118,066,401 25 
12 27 37,607,912,018 37,607,950,281 37,607,950,281 26 
13 29 346,065,536,839 346,065,645,810 346,065,645,810 21 
14 32 3,204,941, 750,802 3,204,942,065,692 3,204,942,065,692 28 
15 34 29,844,570,422,669 29,844,571,475,288 29,844,571,475,288 29 
16 36 279,238,341,033,925 279,238,344,248,557 279,238,344,248,557 30 
17 39 2,623,557,157,654,233 2,623,557,165,610,822 2,623,557,165,610,822 31 
18 41 24,739,954,287,740,860 24,739,954,309,690,415 24,739,954,309,690,415 32 

To the best of the author's knowledge, the greatest value ofx for which 
1t(x) and li(x) have both been computed is 1018

, which is the limit of the table 
above. These values were reported by M. Deleglise and J. Rivat [ 1] in 1996 , 
who, in turn, refer to the 1985 paper [3) by J.C. Lagarias, V.S. Miller and A.M. 
Odlyzko. 

We see that for most practical purposes, we may ignore the error term ~(x) 
in (7) and simplify the relation to the following : 

li(x) = j{x) + O((log x)112). (8) 

LOGARITHMIC INTEGRAL, BRUCKMAN 703 

As we can see,.f(x) as given by the formula in (4) approximates li(x). with 
an astonishing degree of accuracy, at least for the range of values e~ammed. 

We note that we carmot extend the upper limit in the series defining./{x) to 
infinity , since we would then be dealing with a divergent seri.es. The upper 
limit [log x] has been fortuitously selected to make the successive te~s of~ 
series decrease with ascending k (as we can satisfy ourselves by applymg a ratio 
test). It is safe to say that.f(x) is a definite improvement numerically over the 
usual estimates implied by the Prime Number Theorem. 

I. 

2. 

2. 

4. 

5. 
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On the Chromatic Number 
of the Middle Graph of a Graph 

Masakazu Nihei 
Fujishiro High School 

~ntroduction. In recent years the number of students learning graph theory has 
mcreased, because there are applications of graph theory to some areas of 
~~puter science, chemistry, physics, economics, etc., and graph theory is also 
mbmately r~lated to many branches of pure mathematics; for example, group 
theory, matr1x theory, topology, etc. The coloring of graphs is one ofthe most 
interesting branches in graph theory yet, and moreover there are some 
applications concerning the graph colorings. It therefore will be worth while 
studying the graph coloring. 

Definitions and notations. A graph G is a finite nonempty set of objects called 
vertices (the singular is vertex) together with a (possibly empty) set of 
unordered pairs of distinct vertices of called edges. We denote the set of vertices 
and edges of a graph G by V(G) and £(G), respectively. When £(G)= 0, G is 
called an empty graph. 

Let G be a graph. The edge e = { u, v} is said to join the vertices u and v. 
If e = { u, v} is an edge of a graph G, then u and v are adjacent vertices, while 
u and ~ ~e incide~t, as are v and e. Furthermore, if e 1 and e 2 are distinct edges 
of G mc1dent With a common vertex, then e 1 and e2 are adjacent edges. The 
degree of a vertex v of G is the number of edges of G incident with v. The 
degree of a vertex v in G is denoted de& v or simply deg v. 

An assignment of colors to the vertices of a graph G, one color to each 
vertex, so that adjacent vertices are assigned different colors is called a coloring 
of G; a coloring in which n colors are used is an n-coloring. A graph of G is n­
colorable if there exists an m-coloring of for some m !> n. The minimum n for 
which a graph G is n-colorable is called the vertex chromatic number of G and 
is den~ted ~Y x(G). When x(G) = n, G is called n-chromatic. For exam~le, a 
graph m which every two vertices are adjacent is called a complete graph. The 
complete graph with n vertices is denoted by ~· Then x (Kn) = n. 

The middle graph M(G) of a graph G is the graph obtained from G by 
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inserting a new vertex into every edge of G and by joining by edges those pairs 
of these new vertices which lie on adjacent edges ofG (see Figure 1). 

G: M {G) 

Figure 1 

Although the middle of a graph has been investigated by several authors ([3], 
[4]) since it was first discovered in 1973, the chromatic number of the middle 
graph of a graph has not been studied. Now, in this note, we shall give the 
chromatic number of the middle graph M(G) of a graph G. (Notations and 
definitions not given here can be found in [ 1]). 

The edge chromatic number of the endline graph of a graph. In this 
section, we will prepare the theorem and lemma for the proof of our main results. 

An assigmnent of colors to the edges of a graph G, one color to each edge, 
so that adjacent edges are assigned different colors is called an edge coloring of 
G; an edge coloring in which n colors are used is ann-edge coloring. A graph 
G is n-edge colorable if there exists an m-edge coloring for some m !> n. The 
minimum n for which a graph G is n-edge colorable is called the edge chromatic 
number (or chromatic index) of G, and is denoted by x1( G). If x1( G) = k, we say 
that G is k-edge-chromatic. For example (see [1, p. 288] or [2, p. 93]), 
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if n is odd (n *- 1) 
if n is even (1) 

Let A (G) be the maximum degree among the vertices of G. Then A (G) is 
clearly a lower bound for x1(G). The following fimdamental result on edge 
colorings was given by Vizing (see [1, Theorem 10.11 (p. 286)]). 

Theorem 1 (Vizing). Let G be any graph. Then 
X1(G) =A or A+ 1, 

where A is the maximum degree of G. 

Graphs for which X1(G) =A are called class 1, and those for which x1(G) 
= A + 1 are called class 2. It is unlmown in general which graphs belong to 
which class. 

The line graph L(G) of a nonempty graph G is the graph whose vertices are 
in one-one correspondence with the edges of G, two vertices L( G) being adjacent 
if and only if the corresponding edges are adjacent. Then, from the definitions, 
it is immediate that x1(G) =x(L(G)). Let V(G) = {v~> v2, ... , vp}. ToG, we add 
p new vertices and p edges { uj, vi} (i = 1, 2, ... , p ), where u, 's are different from 
any vertex of G and from each other. Then we obtain a new graph with 2p 
vertices. Let us denote this graph by G+ and call it the endline graph of G. We 
also call an edge { u; , v;} an endline of G. Then we have the following result: 

Lemma l. Let G be any graph. Then 
Xl(G+) =A+ 1, 

where 6 is the maximum degree of G. 

Proof. We may consider the following two cases from Theorem 1. 

Case 1. G is of class one. In this case, we are given a 6-edge coloring of G. 
Now, we choose a color c different from 6 colors, and assign it to all the 
end lines of G. Then we have a ( 6 + 1 )-edge coloring of the endline graph G+. 
On the other hand, we have x1( a+) 2 t:. + 1 since (A + 1) is the maximum degree 
ofG+. We hence obtain x1(G+) =A+ l. 
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Case 2. G is of class two. In this case, we are given a (A + I )-edge coloring of 
G. Let v be any vertex of G. Then there is at least one color missing the edges 
incident \\ith v since A is the maximum degree of G. Choosing one color from 
them. we assign it to the endline ofv. Then we have a (A+ I)-edge coloring of 
G+. This implies x)G•) = A + 1. Therefore, we obtain the desired result. • 

Main results. From the defmitions of the endline graph and the middle graph 
of a graph, it is already kno\\n ([3)) that the follm,ing result holds. 

Theorem 2 ((3]). Let G be any graph. Then 
L(G•) s M(G), 

where the S)mbol '!:'means isomorphism. 

By means of Lenuna 1 and Theorem 2, \Ve arriYe at our main result. 

Theorem 3. Let G be any graph. Then 
x(M(G)) = t:. +I, 

where A is the maximwn degree of G. 

Proof. When E(G) = 0, Theorem 3 is clear. Hence we may assume E(G) = 0. 

Then we can easily check that the follo\\ing equality holds: 
x(M(G)) =X (L(G")) = X1(G-) = l> + 1. 

This completes the proof. • 

· By using a similar argument, we can simply give the total chromatic 
number of the complete graph K, The total chromatic number X:! (G) of G is the 
least number of colors needed to color vertices and edges of G so that no 
adjacent vertices, adjacent edges, or incident edges and vertices, are assigned the 
same color. For example, k (KJ = 5 (see Figure 2). 

Figure 2 
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The total graph T(G) of a graph G is that graph whose set of vertices is the 
union of the set of vertices and of the set of edges of G, with two vertices in T(G) 
being adjacent if and only if the corresponding elements of G are adjacent or 
incident. 

From the preceeding definition, it is immediate that 
X2 (G)= X (T(G)). (2) 

By ( 1) and (2), we can give another simple proof of the following well­
known result ([5]): 

if n is odd 
if n is even . X2 (Kn) = { n : 1 

In fact, 
X2 (K,) =X (T(/Q =X (L(Kn+l)) = X1(Kn+l) = { n : 

1 

(3) 

if n is odd 
if n is even . • 

In 1965, M. Behzad ([6]) has conjectured that, for any graph G, 
X2 (G)~ A+ 2. This conjecture is open yet. 

Acknowledgement. The author would like to thank the referee for helpful 
suggestions. 
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Invollltions in Permutations 

Subhash C. Saxena 
Coastal Carolina University 

Permutations are one-one mappings of a non-empty set onto itself, and play 
important roles in the study of group theory and geometry. In this brief note, we 
focus on special types of permutations that are not commonly discussed in 
textbooks. They are called involutions or involutory permutations. The concept 
of involution is ordinarily introduced in geometry textbooks [1, 2, 4, 5] in the 
context of transformations. In abstract algebra, it is obscurely mentioned, such 
as in an exercise in [3]. However, the definition given in [3] differs from the one 
given here which is similar to those in geometry textbooks. In this paper, a 
recursive relation is developed and two theorems are proved. 

Definition 1: A permutation p on a non-empty set is called an involution 
if it is not the identity, but its square (p2

) is the identity. 
In the lexicon of group theory, an involution is of order two; in the language 

of geometry, it is of period two. In terms of electronic gadgetry, an involution 
may be considered as a "toggle switch." 

It follows from the definition that an involution on a set is a transposition or 
is a product of disjoint transpositions. (A transposition is a permutation which 
interchanges exactly two elements.) Thus, in an involution, each element is 
either transposed with another element or remains fixed. 

In this note, we shall follow the usual convention of cyclic notation for a 
permutation. For example, (142) on the set { 1, 2, 3, 4} offour elements is a 
transformation described by I .... 4; 4 .... 2; 2 .... 1, and 3 remains fixed. (This 
permutation is not an involution.) 

Examples of involutions on this set of four elements are (14), (13)(24); 
among others. However, (123) or a permutation containing (123) as a cycle 
cannot be an involution since (123)(123) = (132). 

In this paper, the set of all involutions obtained from a group Sn of 
permutations on n elements is denoted by I... For example, the only involution 
in the group s2 of permutations on two elements { 1, 2} is denoted by 
12 = {(12)} . It consists of a single transposition. Obviously, there is no 
involutiononS1• For~. we have, 13 = {(12),(13),(23)}; which consists of three 
distinct transpositions. 

709 
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There is a recursive relationship among permutations, which we prove in the 
following theorem. 

Theorem 1: For n> 1, 11,..11 = 11..1 + n 11...11 + n, where 11..1 denotes the cardinal 
number of ln. 

Proof: Given In on a set, a new (n + 1)th element when appended to an n~set 
can produce involutions in S,..1 in the following mutually exclusive ways: (i) For 
each involution of In, construct a new permutation on the ( n + 1 )~set in such a 
manner that the (n + 1 )th element remains fixed, and the given involution is not 
disturbed. This permutation is still an involution in sn+l· The number of 
involutions in such a process is llol· This procedure does not produce any 
additional involution. (ii)Transpose the (n + l)th element with each of the 
elements in the original n-set and combine it with each involution on the 
remaining (n- 1) elements. The number of involutions in this process is n lln.11. 
(iii) Transpose the (n + 1 )th element with each element of the old n-set in turn, 
and keep all the remaining elements invariant. Each such transposition will 
occur n times. 

Adding the results in (i), (ii), and (iii) we obtain 
II,.+ II = llnl + n lln.d + n; 

which proves the theorem, since all the involutions in S .... 1 are covered in this 
procedure, and none is duplicated. <> 

By the formula in the theorem 1141 = 9, and II ~1 = 25. For illustrations, we 
obtain 14 and 15• 

As mentioned earlier, 13 = {(1 2), (1 3), (2 3)}. For 14 , frrst we retain the 
involutions 13 • Next, the process (ii) described in the proof will produce the 
following additional involutions from 12: (1 4)(2 3), (2 4)(1 3), and (3 4)(1 2); 
whereas the procedure (iii) will yield (1 4), (2 4), and (3 4). 

Thus, 14 = {(12), (1 3), (2 3); (1 4)(2 3), (2 4)( 1 3), (3 4)(1 2); ( 1 4), (2 4), 
(3 4)}. 

Similarly, Is= {(1 2), (13), (2 3), (14)(2 3), (2 4)(13), (3 4)(1 2), (1 4), 
(2 4), (3 4); (1 5)(2 3), (I 5)(2 4), (1 5)(3 4), (2 5)(1 3), (2 5)(1 4), (2 5)(3 4), 
(3 5)(1 2), (3 5)(1 4), (3 5)(2 4), (4 5)(1 2), (4 5)(13), (4 5)(2 3); (1 5), (2 5), 
(3 5), (4 5)}. 

In view of the fact that each permutation can be expressed as a product of 
transpositons, and every transposition is itself an involution, the following result 
is established. 
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Theorem 2: Every permutation on ann-set is a product of involutions in So. 

Thus, we can regard involutions as building blocks of permutations, ~ the 
same manner as line reflections on a plane are building blocks of all Euchdean 
transformations. This building block has a ,,;der base than that of 

transpositions. . 
In fact some involutions on a given n-set can be interpreted as lme 

reflections 0~ a regular n-gon formed by the vertices identified by the n-set in a 

specific order. 
For examples, (a) (14)(2 3) is a line reflection for the square 1234 through 

the common perpendicular bisector of the opposite sides 1~ and ~3; (b) (3 5~(1 
2) is a reflection through one of the five axes ofsymmetnes, th1s one passmg 

through the vertex 4. 

4 3 

__ 0 __ _ 5 

I 
I 

' /3 
I j I 

l 
i 
I 
j 
i 

~1 2 
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Geometric Interpretations of the Continuous Mean 

Arvind Shah 
Xin-Min Zhang 

University of South Alabama 

Introduction. The theory of means and their inequalitites are very basic and 
important in many fields including mathematics, statistics, physics, and 
economics. Motivated by different concerns, there are numerous ways to 
introduce mean values. For two given positive real numbers a !> b, a mean is an 
intermediate value between a and b. The following three are the best known and 
frequently used means: 
1. The arithmetic mean m 1 == (a + b )12; 

2. The geometric mean m
2 

= lab; 

3. The harmonic mean m
3 

2ab 
a+b 

It is not hard to verify that 
a !> m3 5 m2 ::; m1 !> b 

with any equality holding if and only if a = b. 

These means occur in a wide variety of real-life situations. The following 
examples and other applications can be found in [8] and [5, p. 39]. (I) If Bob's 
salary is $30,000 and Mike's is $40,000, then the average salary of the two is, 
of course, $35,000, the arithmetic mean of their salaries. (2) If an object is 
placed in the left-hand pan of a faulty beam balance, then it weighs 9 grams. 
Whereas if it is placed in the right-hand pan, then it weighs 4 grams. What is 
the true weight of the object? We leave this as an interesting exercise for the 
interested readers to verify that, the true weight of this object is 6 grams which 
is the geometric mean of9 and 4, i.e., 6 = J9 x 4, instead of their arithmetic mean 
6.5 = (9 + 4 )/2, as some readers may think. (3) Let us consider the average 
speed of a car in a round trip from the town A to the town B. Suppose that the 
average speed of the car from A to B is 40 mph, and the average speed on its 
way back from B to A is 60 mph. What is the average speed of the whole 
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journey? Many people would like to believe that it is 50 mph, the arithmetic 
mean of 40 and 60. Recall that the average speed of the car in the whole journey 
is the total distance traveled divided by the total time spent. Again, we leave it 
to the interested reader to verify that the correct answer is 48 mph, the harmonic 
meanof40 and 60. As a matter of fact, when we deal with "average" value of 
some quantities involving ratios, harmonic mean comes into play very naturally. 
Stanley's article [15] "Fair means or foul?" and Machale's article (8] "What 
does 'mean' mean?", as well as the book [5], contain many examples of this sort 
and explain the significance of the study of various means. In general, for an n­
tuple of positive real numbers a== (ah a2, ... , an) E R.n, the arithmetic mean, 
geometric mean, and harmonic mean are defined respectively as follows: 

1 n 
An(a) = - L ai, 

n i=t 

n 
=--

n 

Ella; 
i=l 

arithmetic mean, 

geometric mean, and 

harmonic mean. 

One of the most important classical inequalities for these means is, perhaps, the 
following: 

A,(a) ~ G,(a) ~H .. (a), (1) 

with arty equality holding if and only if a1 = a2 = ... = a,. Means and their 
inequalities, as well as different proofs and interesting applications in different 
fields, have always been among the favorite topics in many undergraduate 
research articles including [7, 8, I4, IS]. There are also many excellent books 
on mearts and related analytic and geometric inequalities such as [1, 5, 6, 10, 
II] . One can find further relevant articles and discussions on means and their 
applications from these references. In this note, we shall take a closer look at the 
continuous mean discussed by Russell in [I4], and present geometric 
interpretations for some particular cases of this continuous mean. 
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Continuous Mean. A continuous mean, or a connected mean, is a function 
that connects various means together as particular function values, or a family 
of means generated by various values of a single parameter. There has been a 
lot of work in the literature devoted to this subject. Some of the approaches are 
quite elementary but very appealing, see [7, 14], and others sophisticated [1, 
10]. The following approach can be found in Russell's article [14]. For 
a= (a I> a2, ··· , an) E R:, let us consider the function 

F(x)(a) • [ a: ••,': ... +a; l ~ 
It is clear that F(1)(a) =An( a), and F(-1)(a) = Hn(a). By applying L'Hospita1's 
rule we see that, lim.r.J'(x)(a) =~(a). Therefore, if we define F(O)(a) = G"(a), 
then F(x)(a) is a continuous function defined everywhere and monotonically 
increasing. For special valu~s of x, F(x)(a) provides the basic means. 
Furthermore, if we denote by a and Q. the largest element and the smallest 
element of al> ~. ···, q,, respectively, then liJl\..+mF(x)(a) = a, and liJl\. .. mF(x)(a) 
= Q.. For a fixed positive n-tuple a, one can easily graph F(x)(a) using a 
computer or a graphing calculator. A natural question is "does F(x0)(a) have 
any particular significance for x0 other than -1, 0, and 1 ?" The answer is 
affirmative. For instance, 

[ 
al2+a22+···+a2]112 

F(2)(a) = 11 

n 

is known as the root mean which is an important concept in analysis and 
statistics. Another important example is F(113Ka). This is called the Lorentz 
mean, and is useful in the theory of equation of state for gases [7]. In 
economics, many indices are computed using geometric means. In statistics, 
many of the parametric statistical modeling techniques require the assumption 
of homogeneity of variance, additivity of structure, and normality of errors. 
Frequently in practice, all of these assumptions are not satisfied on the original 
scale of measurements of response. However, there may exist a transformation 
of the response variable on which these assumptions may be satisfied. Some of 
these transformations include the power transformation, F(x)(a). The power 
tr~f~rm~tions are commonly used in statistics and many other fields involving 
stabsbcal inference. For a detailed explanation, refer to the references [5, p.30] 
and [9, p. 31 0]. Due to the limited space here, in the rest of this note, we shall 
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be concerned with only some geometric interpretations of F(llmXa> form= 2, 3. 

Geometric Interpretations. We begin with the following question: 
Let D

1 
and D

2 
be two circular disks with radii r 1 and r 2 respectively, and 

'• +r2 r = --, the arithmetic mean of r1 and r2• Let D be a circular disk with 
2 

radius r. It is not hard to see that 

Area(D1) + Area(D2) 
Area(D) * ---=-----=-

2 

unless r
1 
= r2. However, since r is the average value of the two given 

radii, the area of D is certainly bigger than the area of the smaller disk 
and smaller than the area of the bigger disk. Which "mean" value of 
Area(D

1
) and Area(D2) should be used to evaluate Area(D)? 

The above question can be answered in general as follows. 

Theorem 1. Let Dl> D2, ••• , Dn be n circular disks with radii r J> r 2, · ··, r n 

respectively, and let D be a circular disk with radius r, where r =! L7=1 r;- Let 
n 

a= (a I> ~ • ••• , ~) where a; = 1t r;2, is the area of the ith circular disk, i = 1, 2, ··· 
,n. Then 

(2) 

with equality holding if and only if r 1 = r2 = ···=""'i.e., all disks are congruent. 

Proof. 

[ 
1 n ] 

2 
[ !;;;{ + ··· + 9] 2 

• ( 1 ) Area(D)=xr2=1t-~ ~'; = V'Lrl y1vn =F- (a), 
n r=l n 2 

and then Theorem I follows from the inequality for the continuous mean 
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F( ~)(a)~F(I)(a)=A,(a). • (3) 

Remark. A similar result holds for a family of squares and their average area, 
a family of equilateral triangles and their average area, as well as other families 
of regular polygonal curves and their average areas. 

Likewise, if we apply the continuous mean inequality F(l /3 )(a) sF( 1 X a), then 
the following result follows immediately. 

Theorem 2. Let D" D2, ... , D" ben spheres with radii'" r2, ... , '"respectively. 
LetD be a sphere of radius r, where r=-L.'-1 r Let a= (a1 a ... a) where 

11 
1- ,. ' 2' ' n 

41t3.th 1 a;= 3'; 1s e vo ume of the ith sphere, i = 1, 2, ... , n. Then 

{ 1) 1 II Vol(D) =F "3 (a)~-;; tf Vol(D;) =A,(a), 

with equality holding if and only if r1 = r2 = ... ""'i.e., all spheres are congruent. 

Theorem 2 holds, of course, for a family of cubes and their average volume. The 
reason we can compare an average value of areas (volumes) for a family of 
circular disks (spheres), or a family of squares (cubes) to a particular one with 
"average size" is that their areas (volumes) are simply power functions of a 
geometric invariant. For a circular disk and a sphere, this invariant is the radius, 
and for a square and a cube, it is the side length. Besides, we consider only a 
family of sintilar figures. A more general, but natural question is, for a given 
family of figures with different shapes, can we define a new figure as the one 
with an "average size", and how do we compare the average value ofthe areas 
(volumes) of those figures in the family with the area (volume) of the one with 
"average size"? Inspired by a number of interesting articles about geometric 
optimization problems in MAA journals, and other undergraduate mathematics 
journals such as [2, 3, 4, 17], we are able to deal with this problem in the next 
section. 

Isoperimetric Quotient. Let C be a simple closed plane curve with perimeter 
L, and enclosing a domain of area A. The classical isoperimetric inequality 
asserts that 

L"- 41t A~ 0, (4) 
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with equality holding if and only if C is a circle. This is perhaps one of the 
oldest geometric inequalities which has been proved and reproved by many 
different methods and generalized in many different directions. Two immediate 
consequences of this inequality are: 
(i) Of all plane figures of equal perimeter, the circle has the maximum area; 
(ii) Of all plane figures of equal area, the circle has the minimum perimeter. 
In geometry, the quantity (47tA)/L2 is called the isoperimetric quotient of the 
curve C; it measures the deviation of C from circularity ([2, 12, 17]). It is 
interesting to note that the isoperimetric quotient is a similarity invariant of C. 
It depends only on the shape of the curve and is independent of its size. For 
instance, (47tA)/L2 = 1 if Cis a circle (no matter how large the radius r is), 
(47tA)/L2 =7tf4 if Cis a square. In general, by a direct calculation, we can verify 

that ifC is a regular n-sided plane polygon, then (47t/A)/L2 = 1t{ ntan~) . In 

[13, p.l80], P6lya abbreviated this quotient as "I.Q." and thereby restated the 
isoperimetric inequality (4) as "Of all simple closed plane figures, the circle has 
the highest I.Q., 1 ". We shall denote by /(C). the I.Q. of the curve C, and list 
a few examples for some common plane curves in the table 1. 

c circle square quadrant rectangle 3:2 semicircle sextant 

/(C) 1 0.7854 0.774 0.75398 0.74668 0.7086 

Table l. 

Similarly, let D be a simple closed surface in E3 with volume V and surface area 
S. The I.Q. of D can be defined as 

367tV2 

s3 
which is also a similarity invariant. The information contained in the following 
table 2 suggests that "Of all simple closed surfaces in E3

, the sphere has the 
highest I.Q., 1." 
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D sphere icosahedron dodecahedron octahedron cube tedrahedron 

I (D) 1 0.8288 0.7547 0.6045 0.5236 0.3023 

Table2. 

Isoperimetric quotients, their inequalities, and related problems are important in 
both mathematics and physics. The literature in this subject is very rich. In 
particular, we recommend the interested reader to [11,12,13]. 

Now, for the particular concerns of our problem here, we shall make a slight 
modification to the definition of I. Q .'s, and introduce the so-called pseudo-!. Q. 
for a geometric figure in E2 or E3 so that we can define an average sized figure 
for each given family of figures. For a simple closed plane curve C with 
perimeter L, area A, and I.Q. l(C), the pseudo-I.Q. de ofC is defined as 

d,=L[~l 
It is clear that de is a geometric invariant of C and A = d;. For instance, 
de= {ii.rifC is a circle of radius r, and de= a if Cis a square with side length a. 
Since pseudo-I.Q. depends on the perimeter of a curve, it is no longer a similarity 
invariant. Two congruent plane curves must have the same pseudo-I.Q., but the 
inverse is not true. We leave it to the interested reader to check that two plane 
figures having the same pseudo-I.Q. are not necessarily congruent (hint: consider 
two n-sided polygons with a given set of side lengths, and inscribed in a circle). 
Nevertheless, we still can claim that "of all simple closed plane curves with 
given perimeter, the circle has the highest pseudo-I.Q. !" 

As the cowtterpart for three dimensional figures, we define the pseudo-I.Q. 
for a simple closed surface D in E3 with surface area S, enclosing a domain of 
volume Vas 

d ='S-( 
/(D)) tt6 

D V>J 367t , 

where l(D) is the ordinary I.Q. of D. It is clear that such dD is a well-defined 
geometric invariant forD, and V= d~ . Moreover, we also claim: "of all simple 
closed surfaces in E3 with given surface area, the sphere has the highest pseudo-
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I.Q.I" As many readers may have thought by now, there are n~tural .high~r 
dimensional analogues for isoperimetric quotients and related 1sopenmetnc 
inequalities. There are even more general analogues in space fonns other than 
Euclidean spaces ( 12). Let us come back to the interpretations of the continuous 
mean and generalizations of Theorems 1 and 2. 

Theorem 3. Let D1, D2, •• • , D, ben simple closed plane curves with pseudo-

1 Q ' s d d ... d respectively and D be a simple closed plane curve with 
. . 1' 2' ' " ' 

pseudo-1 Q. d, whered=.!.. L7=t dr Let a=(d1
2
,d:,. .. ,d;). Then 

n 

Area( D)=~~) (a)~ A n(a) = ~ L~=l Area(D;), 

with equality holding when all D, 's are congruent. 

Proof. From the definition of the continuous mean, we have that 

Area(D) =d2 =~~)<a), Area(D;) =d;
2
,i = 1,2,-·· ,n, and F(l)(a) = 

An( a)=.!.. L~=t Area(D;), thus Theorem 3 is simply again a consequence ofthe 
n 

continuous mean inequality 

r( t)(a)~F(l)(a), 
with equality holding when d1 = d2 = ··· = dn-

Likewise, we have the same result for simple closed surfaces in E
3

. 

Theorem 4. Let Dt> D2, •• • , D, ben simple closed surfaces E
3 wi~h ps;u~o­

I.Q ' s dl> d2> ... , dn respectively, and D be a simple closed surface mE w1th 

l """ 3 3 d3) pseudo-I. Q. d, where d = - L..,; =t dr Let a= (dt , dl, ···, n · 
n 

Then 

Vol(D)=F- (a)~An(a)=-:EVol(D;), ( 1) 1 n 

3 n i=l 
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with equality holding when all D/s are congruent. 

There is no doubt that function values of F(x) at other points may likely 
possess some unexpected properties, for examples, do F(tr), F (lltr), F (e), and 
F (lie) have any particular meanings? Po1ya has pointed out some natural 
connections between inequalities for means and geometric inequalities [ 13 ), and 
Niven has used many basic mean inequalities, and written a very popular book, 
Maxima and Minima Without Calculus [ 11). Our interpretations of the 
continuous mean here is simply another attempt to demonstrate the kind of 
connections which we believe could be among the interesting topics for 
undergraduate research in mathematics and statistics. 
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A Note on 'Analytical Formulas for 

B.,[; 1 aodE7.1 ~j 
Hans J.H. Tuenter 

York University 

~ 

Recently' Sivakumar et al. [ 1] gave a derivation for the sums E:'= I r if p l and 

L~=l Li!p j, where n andp are arbitrary positive integers. We give a simpler 

derivation by linking it directly to the sum E;'=t i = ~n(n + 1). 

For ease of notation denote a.= I nip l and ~ = n mod p, so that n = ap + ~. 

Observe that the sum E7., i can be written as 

n a p 1l 
Ei=E E w-t)p+k>+E (ap+k). o> 
i=l j=l k=l k=l 

Dividing each summand by p and rounding up directly gives 

t fi!pl= E tj+ t (a.+l)=_!_ap(a.+l)+~(a.+l)=_!_(n+~)(a.+l). (2) 
i=l j=l k•l k=l 2 2 

Now observe that 

n n 

E <LitpJ+t-li!Pl>=E 1(p1,l=a., 
i=l i=l 

(3) 

which gives 

n n l L Lf!pj = L fi/p l-n +a.= ... =-a.(n +~ -p +2). (4) 
i=l i=l 2 

Substitution of~ = n - op and a. = L nip J yields the formulas as given in [ 1]. 
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Introduction 

What is a Proof? 
Clayton W. Dodge 
University of Maine 

Proof might be defined as "that which convinces one of the truth of a 
statement." Of comse, some people are more easily convinced than others. Then, 
too, a person who has never studied higher mathematics might not be convinced 
of the truth of Fermat's last theorem. On the other hand, such a person might be 
completely convinced of the truth of Goldbach's conjecture after trying a few 
cases. So, our definition of proof needs to be sharpened. Perhaps we might say 
that proof is "that which convinces a properly prepared person of the truth of a 
statement." This definition opens the question as to just what is proper 
preparation, but in any specific situation perhaps a reasonable agreement can 
be made. In any case, I shall not pursue that question. 

It is, rather, my goal to present some proofs that should be useful in 
classrooms. Whether one uses the term proof or a substitute such as 
demonstration or argument, etc., is immaterial. Although using the term proof 
in high school and college classes tends to raise the blood pressure of many 
students and cause them to think in terms of highly formal arguments that no one 
can understand, students will respond positively to the question, "Why is this 
statement true?" When an answer is adequate, the student can be told that he or 
she has just given a proof. In such an informal manner, the concept of proof and 
the laws of logic can be presented and understood and even enjoyed. (Just 
consider how much time and effort students will expend solving logical games 
such as Rubie's Cube.) Even young children can and do understand the concept 
of a logical argument. 

A real proof is tailored to the student's sophistication 

A story I have used with children as young as four or five years old 
illustrates their understanding of logic. I tell them of the child who went to a 
party and had a piece of chocolate cake, a piece of carrot cake, and a piece of 
yellow cake. So he or she had four pieces of cake. I hold up a finger for each 
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named cake, so I am holding up three fingers when I say "four pieces of cake." 
If the child hasn't counted, I repeat the story. When he or she realizes the 
inconsistency, then I say, "Oh yes, afterwards the child had a stomach ache," 
which, of course, sounds like stomach cake. 

For a child who is older, I ask how old he or she is. When the child answers, 
say, 7, I reply, "When I was your age, I was 9." That is, I add 1 or 2 years to 
their age. 

Invariably, children recognize the illogic of either story. Children are used 
to thinking logically and they accept simple logical arguments. For example, 
without actually stating so, a child understands that I more than I is 2, I more 
than 2 is 3, and so forth. So, to add 4 and 3, many.children -will hold 4 fingers on 
one hand and 3 on the other. They then count "4, 5, 6, 7," starting with the 4 
fingers and counting the three fingers as "5, 6, 7." That is, since 3 = 1 + l + 1, 
then 4 + 3 = 4 + (1 +I+ I)= (4 + l) + 1 + 1 = (5 + 1) +I= 6 + 1 = 7. They 
may not have put the names commutative and associative to the laws of 
arithmetic they are using, but they do understand on an informal level much 
more than we give them credit for. 

So, when and how should we introduce proof? The answer is, right in sub­
primary, ·when they first enter school. Rules (or patterns) in mathematics should 
be noted and emphasized. For instance, when adding 5 + 2, it does not matter 
whether you start with the 2 or with the 5; the answer will be the same either 
way. It is quicker, however, to start with the larger number. Counting "5, 6,. 7" 
is easier than counting "2, 3, 4, 5, 6, 7." By bringing such ideas to the attenhon 
of the students, and especially by showing them how they can save effort, 
students begin looking for such patterns. They look for logical arguments. 

As another example from arithmetic, consider the question: Is zero an even 
number? It is easy just to answer the question \\ith a "Yes." It is far more 
instructive to say, "I don't know. Let's work it out. What numbers are even?'' The 
students, with a bit of guidance, can come up \\ith patterns that ,,;n answer the 
question The even nwnbers are 2, 4, 6, 8, .... Show them on a number line. Ask 
if the pattern can be continued to the left. Ask what you call numbers that are not 
even. Ask what numbers are odd. How can you decide whether a number is odd 
or even? What happens if you divide an odd number by 2? What happens if you 
di\'ide an e\'en nwnber by 2? What happens if you divide zero by 2? How does 
zero fit into the patterns? Does it fit into either the odd or the even category? The 
students, then, \\ill answer their O\"n question, gaining understanding of both 
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mathematics and proof in the process. 

No one knows aU the answers 

~t is easy f~r. students to pose questions that you have never previously 
constdered. And tt IS embarrassing to have to admit you do not know the answer 
especially to youngsters. Therefore, if you make it a habit to answer a questio~ 
with "I don't know, but let's look into it," then you are covered when you really 
don't know. Fwthermore, it gives you a chance to think about it and look into it 
yourself. Many times the students will find their own answers. Occasionally, 
they themselves find an answer and then thank you for it! I have found this 
tecluiique works well 

Again, why cannot one divide by zero? Since adding zero "does nothing" to 
a IWIDber, should not division by zero do the same? Of course, there are several 
~ays to answer the question, depending upon the children's understanding at the 
ttme. If they understand division by fractions, one can use illustrations of 
divisio~ by smaller and smaller fractions such as 112, 1/10, 1/100, etc. If not, 
then a dift'erent argument must be used. Perhaps you remind the students that 6 
+. ~ is ~e number of objects that would appear in each pile if 6 objects were 
~IVlded ~two ~ual piles. Certainly, 6 + 1 makes sense as putting all 6 objects 
mto one pile and 1s 6, but how can you arrange 6 objects in zero equal piles? It 
makes no sense. 

Perhaps you recall a proof of the theorem that the midpoint of the 
hypotenuse of a right triangle is equidistant from all three vertices of the triangle. 
The usual proof involves dropping a perpendicular from that midpoint to one side 
of the ~angle and then obtaining congruent right triangles. A much sinlpler and 
more vtsual proof follows. Visualize it or draw it as you read it. Let M be the 
midpoint of the hypothenuse of right triangle ABC with right angle at B. Cover 
the figure with tracing paper and put in a thumb tack atM. Trace the triangle 
and call the traced figure A 'B 'C ~Now rotate the traced figure a half tum about 
the thumb tack so that A 'is at C and C 'is at A. The two triangles now fonn a 
rectangle ABCB '. Because a rectangle has symmetry about its center M and its 
diagonals are equal, then.M4, MB, MC. and MB 'are all equal. In particular, we 
have proved the given theorem, that MA, MB, and MC are all equal so we can 
tear off the tracing paper. ' 

Any time you can make a picture, you provide powerful visual reinforcement 
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of the underlying concept. 
Older students can examine the concept of symmeby in terms of translations, 

rotations, and reflections, but younger students can be satisfied with more 
elementary discussions of the meaning of symmetry. Although two-column 
proofs can be instructive, proofs in higher mathematics are given in the more 
informal paragraph form, which appears less formidable to the reader. 

As a final example, consider this basic theorem: The base angles of an 
isosceles triangle are congruent (equal in size). There are many ways to prove 
this result, such as drawing from the apex of the triangle either the angle 
bisector, the altitude, or the median to the opposite side and then proving 
congruent the two triangles thus formed. Call the isosceles triangle ABC with 
apex at B. An interesting proof is to argue that triangles ABC and CBA are 
congruent by SAS, so angles A and C are congruent because they are 
corresponding parts of congruent triangles. An elementary variation of this proof 
nicely answers the question of why these base angles are congruent. Because 
sides AB and BC are congruent, then the triangle is symmetric in the bisector of 
angle B. If the triangle is flipped over (reflected in) that line, then its new 
position coincides with its old position. So its base angles are the same size. 
They are congruent. 

Conclusion 

A proof should be given or constructed when the student is ready for it, and 
the level of the proof should be consistent with the immediate needs of the 
student. If something is completely obvious, a proof is probably a waste of time. 
When there is a question or when something is not obvious, then a proof can be 
helpful. Some sort of proof should be given at such a time, or at least an 
explanation that a proof has to be postponed for some reason. The best proof is 
the proof that a student himself or herself constructs, perhaps with your help. 
Most importantly, a proof is a discussion or argument that convinces one that a 
given statement is true. 



Scheduling Round-Robin Tournaments 

James Oehmann (student) 
University of North Florida 

To schedule round-robin tournaments means to arrange N different 
teams, so that each team plays every other team exactly once. There is a 
method developed by Freud [1,2] which adds a "dwnmyteam" toN ifN is 
odd, so we may suppose that N is even in the following statement: 

If you haveN different teams, label theN teams with the integers 1,2,3, ... , 
N-l,N We have team/, withi=N, playteamj, with} =N andj =I, in the kth 
round if l+j = k (mod N-1). This schedules games for all teams in round k, 
except for team Nand the one team I for which 2i = k (mod N-1 ). There is one 
such team because the congruence 2x = k (mod N-1) has exactly one solution 
with 1 ~ x ~ N-l, since (2, N-1) = 1. We match this team I with team N in the 
kthround. 

I have found an alternative method which is much simpler and does not use 
congruences. This method works for three or more teams and it will give you 
the same result as using the formula but it requires no calculations or 
understanding of higher mathematics. It only requires filling numbers into 
blanks by the following easy rules: 

1. Give each team a number starting with I. Make a chart with each team 
number on the top (start with 1 at the left and increase your numbers as you 
go to the right) and the tournament round numbers down the left side of your 
chart (start with I at the top and increase your numbers as you go down) 
2.For an odd number of teams, write the highest team number along to main 
diagonal. Write the next highest along the diagonal above that. Keep 
decreasing the numbers as you fill in the diagonals. Below the main 
diagonal, fill the next diagonal with 1 and continue increasing the numbers 
until all diagonals are filled. [NOTE: You will need the same number of 
rounds as teams playing] 
3. Now go back and any place that the number you wrote matches the team 
number, write "Bye" instead and that team will not have a game that round. 
Now, your chart is complete and your tournament schedule is complete. 
Table I is the example for five teams. 
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Team Number 

1 2 3 4 5 

I 5 4 (3) 2 1 
Bye 

n (1) 5 4 3 2 
Bye 

m 2 1 5 (4) 3 
Bye 

IV 3 (2) 1 5 4 
Bye 

v 4 3 2 1 (5) 
Bye 

Table I 

4. If there is an even number of teams, make a chart for the odd number 
preceding your number of teams and add a column for the last team. 
Anyone who has a "Bye" should be matched up with the new team that was 
just added so that everyone plays in every round. Write the new team 
number in place of the "Bye" and the corresponding number in the new 
team's column. 
Table II is the example for six teams. 

Team Number 

1 2 3 4 

I 5 4 (3) 6 2 

II (l) s 4 3 
6 

Ill 2 1 5 (4) 
6 

IV 3 (2) I 5 
6 

v 4 3 2 l 

TableD 

5 
I 
I 

l 

2 

3 

4 

(5) 
6 

------, 
6 I 

-------1 
3 I 

------1 
1 I 

I 
I 

------1 
4 I 

I 
I 

------1 
2 I 

I 
I 

------1 
s I 

I 
I ______ .J 
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Math his 'passion, teaching his life ... 

Donald E. Miller 
Laura Meyers (student) 
Saint Mary's College 

At its 1998 induction ceremony the Indiana Epsilon chapter posthumously 
inducted Milko Jeglic, a former professor and mentor at Saint Mary's College. 
We are pleased to share his story in hope that it might be an inspiration to 
aspiring mathematicians. 

With Math as his passion, Milko Jeglic humbly endured hardship to make 
teaching his life. Educated and successful, Jeglic started his professional career 
teaching mathematics and pedagogy at a teacher's institute in Ljubljana, 
Slovenia. A commwtist invasion found Jeglic moving his family to Austria, only 
to bounce between refugee camps for over four years. Making the best of an 
adverse situation, Jeglic organized schools within the camps. Many would have 
accepted defeat after similar trials, but Jeglic's life started anew in the United 
States of America. Freedom was foWld, but professional respect was 
Wll'ecognized at first. In the Saint Mary's community, the admiration for Jeglic 
was discovered again; he became known to his students as a classmate and to his 
colleagues as a mentor and role-model. 

It was with pride that the Saint Mary's Epsilon chapter annoWtced the 
posthumous induction of Milko Jeglic, a revered professor and gentleman of 
mathematics. Born June 2, I 90 I as the sixth of eleven children in Rakek, 
Slovenia, Jeglic was an avid gymnast in his youth. For university studies, he 
headed to the University of Zagreb, Croatia where he studied Mathematics and 
Pedagogy, earning his professor's diploma in 1927. In his first professional 
position at the Teacher's Institute in Ljubljana, his talent and enthusiasm for 
teaching and education was recognized, resulting in his appointment as 
superintendent of the primary schools of Slovenia in only nine years. During this 
period as superintendent, he published six mathematics textbooks as well as a 
book on gymnastics. 

At the end of World War II (1945), the communists invaded Slovenia. 
Jeglic took this as his cue to leave his native land and fled, with his wife and two 
sons, to neighboring Austria. At that time, Austria was under the British 
protectorate and conditions for refugees were less than ideal. It was the refugee 
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camps of Austria that the Jeglic family called home for the next four and a half 
years. 

To occupy his time, Jeglic stepped up to the challenge of organizing schools 
within the camps. To his credit these schools , unlike others of refugee 
encampments, were accredited by the British and Austrian authorities. Jeglic 
utilized his acute teaching abilities by teaching mathematics in truly multi­
cultural classrooms on the secondary level. In no time at all, Jeglic became the 
principal of the school. Of his students, many went on to accomplish greatness; 
the recently named Cardinal Aloysius Ambrozic of Toronto is included in this 
elite list. 

When it became evident that life for the Jeglic family was not going to 
improve in Austria, he again ventured to move his family. With the allure of 
freedom and the promise of a new start overshadowing the evident 
English language barrier, the family emigrated to the United States of America 
in 1949. Initially settling in the Mesabi Range of Minnesota (where he had a 
sponsor), and with no knowledge of the English language, Jeglic worked in the 
iron mines. The family spent but one winter there before moving to northern 
Illinois where Jeglic was reintroduced to campus life as a janitor at Lake Forest 
College. 

Mathematics, whether the time period was the 1950's or is the 1990's, has 
always been a stress point for students; a person possessing knowledge of this 
academic area cannot stay hidden for long. Jeglic was no different- when 
students heard about this janitor who could do math, his tutelage was quickly in 
demand. The desire to return to the classroom intensified with each student he 
helped, for Jeglic was back in his element. 

Through a childhood priest/friend, Jeglic became aware of an open faculty 
position at Saint Mary's College in Notre Dame, Indiana. After interviewing in 
the spring of 1952, he was overjoyed at the offer of a position as instructor for 
1952-53 academic year. He was ecstatic to be back in the classroom. 
Colleagues related his first commencement in May of 1953, "Milko, in his 
academic splendor, sauntered down the lines of assembled faculty with tears 
streaming down his happy face saying, 'Today is the greatest day of my life. I 
am restored to my academic profession.'" 

When Jeglic started his employment at Saint Mary's, a women's college, he 
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made history by being the first male member o.f the mathema~cs department. 
lbis was a time when no mathematics was reqwred fo~ graduation .. None-the­
less, Jeglic, a quintessential European professo~ wath a. Sloveruan ~ccent, 
moustache, dapper dark suit and tie, made mathematics an enjoyable elective for 
women in the fifties. In his first years at Saint Mary's ~ollege, he e~aged 
learners by calling them his classmates -they were learrung mathem~ttcs, he 
was learning English. He brought compassion, love and underst:mding .to a 
foreign world- the world of mathematics. With the influen~e of his forestght, 
by the time Jeglic left Saint Mary's College, mathematics h~d become a 
requirement for all graduates; the school was committed to developtng the whole 
woman. 

As part of the mathematics faculty in Notre Dame, Jeglic. tau~t full-time 
at Saint Mary's College and chaired a Calculus course at t~e ?mvers1ty .of Notre 
Dame. In spite of this ambitious effort, he always mamtamed the highest. of 
standards for both himself and his students. The New Math of the late fifties 
required a more abstract approach than he had known in Europe, but he adapted 
with ease. He welcomed new texts, new ideas, new course conte~t, and spoke 
from experience when telling his students, "To learn mathematics yo~ must 
suffer- not too much- but it will hurt a little." Though he taught a vanety of 
classes, number theory was always his favorite. 

His endearing concern and generosity can be seen through the Profes~or 
MilkoJeg/ic Award for Achievement in Mathematics, .an ~ual.mon~tary pn~e 
given to the student that has the highest number of quahty pomts m Samt M~ s 
mathematics course through seven semesters. Jeglic, desirous of en~o~agmg 
students to take more mathematics than the minimum, set the cntena and 
endowed the award. 

To honor Milko Jeglic for his lifetime of scholarly service to mathematics, 
his students and colleagues, induction into Pi Mu Epsilon is timely at ~e end ~f 
his marvelous mathematical life. He will live in the hearts an~ memones ofhis 
students and colleagues. Now his name will be honored, as 1t should be, by a 
professional organization. 

Acknowledgment. The authors with ~o th.~ Frank. Jeglic, ~d M~i~ 
Cooney, CSC, for their assistance with the histone information contamed wtthin 
this article. 



BIOGRAPHICAL SKETCHES OF THE AUTHORS 

Loi Nguyen is the vice president of the Vietnamese community at 
Jacksonville. As a father of two grown children, he is still a student at UNF 
seeking a bachelor's degree in mathematics. Tu Tran lived in Vietnam until 
1991. He is a senior with a major in chemistry and a minor in computer science. 
He likes to create web sites. Tu will be a graduate student this summer. He 
loves his parents very much. 

Paul Fishback received his undergraduate degree from Hamilton College 
and his doctorate from the University of Wisconsin. His mathematical interests 
are in analysis and dynamical systems. Since coming to Grand Valley, he has 
served as the faculty advisor for the Mathematics and Statistics Club. Nicholas 
Ceglarek graduated from Grand Valley State University in 1996, where in 
addition to studying mathematics, he set school records as a quarterback. He 
now teaches at Rockford High School in Rockford, Michigan. In addition to 
teaching, he coaches his high school football and mathematics team. Tobias 
Moleski graduated from Grand Valley State University in 1996, with degrees 
in physics and mathematics. He is now in the physics doctoral program at 
Oregon State University. 

Prem N. Bajaj is an associate professor of Mathematics and Statistics at 
Wichita State University. He joined this school in 1968. He activated the 
Kansas Gamma Chapter of Pi Mu Epsilon in 1982 (and was its advisor until 
1994 ). His hobbies are swimming and racquet ball. His area of research is 
Ordinary Differential Equations. 

PaulS. Bruckman was born in Florence, Italy, became a naturalized U.S. 
citizen in 1950, and received his M.S. degree in mathematics from the University 
oflllinois at Chicago in 1974. From 1960 through 1990, he was employed with 
private actuarial finns, most recently as a pension plan actuary. Mr. Bruckman 
has been and continues to be a frequent contributor to The Fibonacci Quarterly 
and the Pi Mu Epsilon Journal . His primary mathematical interests are rooted 
in nwnber theory, linear recurrences and pseduoprimes. 

Masakazu Nibei is a teacher of mathematics at Fujishiro High School in 
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Japan. He received his M.S. in 1975 from Rikkyo University. His research 
interests are graph theory and mathematical education. 

Subhash C. Saxena received his Ph.D. in Differential Geometry from the 
University of Delhi, India. For the last 35 years, he has taught at several 
universities in the United States. Dr. Saxena has published in the areas of 
geometry, analysis, algebra and discrete mathematics. He has authored a book 
entitled "Introduction to Real Variable Theory." He has won the Distinguished 
Teaching Award at his campus and the Amoco Outstanding Teaching Award for 
all 4-year campuses of the University of South Carolina system. His 
biographical sketch is listed in may Who's Who publications. Recently, he has 
been included in the current (15th) edition of 'Who's Who in the World'. 

Arvind Shah is a professor of statistics and Xin-Min Zhang is an associate 
professor of mathematics in the Department of Mathematics and Statistics at the 
University of South Alabama. 

Hans J. H. Tuenter received the B. Sc. degree in Applied Mathematics, 
and the M. Sc. degree in Operational Research & Stochastics from Twente 
University ofTechnology, Enschede, The Netherlands, and the Ph. D. degree in 
Industrial Mathematics from the University of Birmingham, England. He is 
currently a post doctoral fellow in Management Science at the Schulich School 
ofBusiness, York University, Toronto, Canada. 

Clayton W. Dodge received his B.A. and M.A. degrees from the University 
of Maine in 1956 and 1959. He taught there for 41 years, retiring as Professor 
Emeritus of Mathematics in 1997. His interests include geometry, teacher 
education, and problems. He was an editor for the Elementary Problem 
Department of the American Mathematical Monthly and has served as Problems 
Editor for this journal since 1980. 

James Oehmann is a senior with a Mathematics major and a Physics 
minor. He will graduate in the spring of 1999. He has lived in Jacksonville 
since 1990 and is getting married in June. 

Donald E. Miller is associate professor and Chair of the Department of 
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Mathematics at Saint Mary's College, Notre Dame. He is a member of the 
Education Committee of the Society for Industrial and Applied Mathematics and 
has served as Chair of the Indiana Section of the Mathematical Association of 
America. His consulting and research activities focus on modeling and applied 
statistics; current research with a colleague in Political Science involves 
statistical analysis of the politics related to state approved gambling. Having 
been recruited by Jeglic, they served as colleagues for more than a decade. 
Laura Meyers is a 1998 graduate of Saint Mary's College and a member of Pi 
Mu Epsilon. She holds a Bachelor of Arts degree in Mathematics with a minor 
in Business Administration. Highlights of her Saint Mary's career include 
completing a year long senior comprehensive research project, with Donald 
Miller as her advisor, that focused on Markov Chains and spending a semester 
abroad in Fremantle, Australia, during her junior year. She is currently 
employed by Ernst & Young LLP as a Management Consultant in Chicago. 
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Erratum 

The last paragraph on page 684 (Volume 10, Number 8) should have read: 

The American Mathematical Society has given Pi Mu 
Epsilon a grant to be used as monetary awards for excellent 
student presentations. The six speakers indicated above ~ach 
received $100. The National Security Agency has prov1ded 
money to pay for student subsistence. 

A Mathematical Christmas Tree with Ornaments 

In the carol "The Twelve Days of Christmas," it is known that the total 
number of gifts given over the course of the twelve days is 364. Rotation the 
standard multiplication table produces the following "Christmas tree". 

2 2 
3 4 3 

4 6 6 4 
5 8 9 8 5 

6 10 12 12 10 6 

7 12 15 16 15 12 7 
8 14 18 20 20 18 14 8 

9 16 21 24 25 24 21 16 9 

10 18 24 28 30 30 28 24 18 10 
11 20 27 32 35 36 35 32 27 20 11 

12 22 30 36 40 42 42 40 36 30 22 12 
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Notice that by summing the entries in the twelfth row of this Christmas tree 
one is finding the total nwnber of gifts received during the twelve days of 
Christmas. 

In general, swnming the elements in the nth row of the above tree gives the 
following. 

S(n) = n(l) + (n - 1)2 + ... + 2(n - 1) + (l)n 
n 

= L (II - i + I )i 
i=l 
n 

= L [(n + l)i - i 2] 
i=l 

n n 

= (n + I) L I - L i 2 

i=J jaJ 

= (n + l)n( + 1)/2 - n(n + 1)(2n + 1)/6 

= n(n + I) [3(n + I) - (2n + 1))/6 

= n(n + l)(n + 2)/6 

This formula gives the number of gifts accumulated at any day n. In particular, 
S(l2) = {12){13){14)/6 = 364 and S(365) = (365)(366)(367)/6 = 8171255. 

It should be noted that S(n) = ( n; 2) . 

The Christmas tree is bedecked with 'diamond shaped ornaments' fonned 
from multiplicands. A typical ornament is shown below. 

15 
20 18 

25 24 21 
30 28 

35 

In this ornament, notice that 15 · 35 = 25 · 21. To see that a similar property 
holds in general, rotate the Christmas tree back to the standard multiplication 
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table. Now, the diamond pattern mentioned can be translated into a s~uare 
pattern. Choose any element in the multiplication table--say the ~umber m the 
ith row andjth column The value of this number is i • j. In fo~ the square 
pattern with "integral side length a," one would have the followmg four numbers 
in the table. 

i ·j + i ·a 

>< 
i·j+a·j (i+a)·(i+a) 

Now, checking the "ornament pattern" becomes a matter of verifying that 

; · j · (i + a) · (j + a) = (i · j + i · a) · (i • j + a • j). 

This is a simple exercise left to the reader. 
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Problems for Solution 

940. Proposed by Mike Pinter, Belmont University, Nashville, 
Tennessee. 

In the following base ten alphametic determine the maximum value for 
MONEY: 

DAD + SEND = MONEY. 

941. Proposed by Ayoub B. Ayoub, Pennsylvania State University, 
Abington College, Abington, Pennsylvania. 

Let a 1 = I, a, = k > 2, and for n > 2 a = ka - a .. ' n n-1 n-2· 

a) Show that the general term an is given by 

B 11 - B -n k + -1k 2 
a = where B = V - 4 

n B - B-1 , 2 . 

*b) Find a suitable expression for the sum Sn of the first n terms. 
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942. Proposed by John S. Spracker, Western Kentucky University, 

Bowling Green, Kentucky. 
Calculate the following "sums" of the form I:;s, an for each given 

sequence {an} and given addition EB. To deal with nonassociative operations 
define S1 = a1 and Sn+, = Sn EB an for n > 0. 

a) On It let a EB b = lla + lib and take an = n. Then S, = 1, S2 = 1 + 
1 12 = 3/2, S3 = 2/3 + 113 = 1, .... 

b) On It let a EB b = abl(a +b) and take an= lin. 

c) On It let a EB b = lab and take an = lin. 

d) On R let a EB b = cos(a +b) and take an= 21tn. 

943. Proposed by PaulS. Bruckman, Edmonds, Washington. 
Let a.= (1 +VS)/2 and let F

11 
denote the nth Fibonacci number, so that 

F
1 
= F

2 
= 1 and Fn+2 = F

11 
+ Fn+1 for n > 0. For n = 1, 2, ... define 

n F. 11 F. 
un = ex" II __1!.. and VII = ex" II ~-

k=l F2k+l k=l F2k 

Prove that U = limn_, .. Un and V = limn_..., Vn exist. If possible, evaluate U and 

V in closed form. 

944. Proposed by David Iny, Baltimore, Maryland. 

Evaluate 

r- dx 
Jo x + e:x 

*945. Proposed by the late Jack Gar.funkel, Flushing, New York. 
Let A, B, C be the angles of a triangle and A : B: C' those of another 

triangle with A 2: B 2: C, A > C, A ' 2: B' 2: C ~ and A ' > C '. Prove or 

disprove that 

if A- C 2: 3(A '- C'), then L cos A s L sinA 
1
• 

2 

946. Proposed by Ayoub B. Ayoub, Pennsylvania State University, 

Abington College, Abington, Pennsylvania. 
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Let M be a point inside (outside) triangle ABC if LA is acute (obtuse) 
and let mLMBA + mLMCA = 90°. 

a) Prove that (BC·AMi = (AB·CMi + (CA·BM)2
• 

b) Show that the Pythagorean theorem is a special case of the formula 
of part (a). 

947. Proposed by PaulS. Bruckman, Edmonds, Washington. 
In the card game of hearts, a regular deck of 52 cards is dealt to four 

players. An assigned player leads off, and tricks are taken by rules that need 
not concern us here. Each heart-suit card is assigned a value of 1 point, and 
the queen of spades has a value of 13 points; thus, the total value of each 
hand is 26 points. Your score for any hand is the sum of the points in the 
tricks you have taken. If one player, however, takes all 26 points in any 
hand, then that player is awarded 0 points and each of the other players is 
burdened with 26 points. 

The object of the game is to accumulate the fewest points. Hands 
co~tinu~ to be played until at least one player has 100 or more points, at 
whtch ttme the player with the fewest points is declared the winner of the 
game. Ties are possible. Suppose the winner's total gain after a game is the 
total of .the differences between his score and that of each other player. At 
$1 a pomt, what is the winner's maximum possible total gain per game? 

948. Proposed by Robert C. Gebhardt, Hopatcong, New Jersey. 
All six faces of a cube 4 inches on a side are painted red. Then the cube is 
chopped into 64 smaller l-inch cubes. The "inside" faces are left unpainted. 
The 64 small cubes are put into a box and one is drawn at random, and 
tossed. Find the probability that when it comes to rest its upper face will be 
red. 

949. Proposed by Charles Ashbacher, Decisionmark, Cedar Rapids, 
Iowa. 

In a collection of problems edited by Dumitrescu and Seleacu [ 1] a 
positive integer is said to be a Smarandache pseudo-odd(even) number if 
some permutation of its digits is odd(even). For example, 12345678 is both 
Smarandache pseudo-even and pseudo-odd since 12456783 is odd. A positive 
in~eger is said to be a Smarandache pseudo-multiple of the positive integer 
k tf some permutation of its digits is divisible by k. 
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a) Prove that if a positive integer is chosen at random, the probability 
that it is Smarandache pseudo-odd is 1. 

b) Prove that if a positive integer is chosen at random, the probability 
that it is Smarandache pseudo-even is 1. 

c) Prove that if a positive integer is chosen at random, the probability 
that it is a Smarandache pseudo-multiple of 3 is 1/3. 

d) Prove that if a positive integer is chosen at random, the probability 
that it is a Smarandache pseudo-multiple of S is 1. 

Reference 

1. c. Dumitrescu and V. Seleacu, Some Notions and Questions in Number 

Theory, Erhus University Press, 1994. 

950. Proposed by S. B. Karmakar, Piscataway, New Jersey. 
Let c > b > a > 0 be the lengths of the sides of an obtuse triangle; let m 

be a prime and n an even positive integer such that 1 < d = min < 2. Without 
using Fermat's last theorem prove that the equation 

cannot be satisfied if a, b, and c are relatively prime in pairs. 

951. Proposed by Richard I. Hess, Rancho Palos Verdes, California. 
An ant crawls along the surface of a dicube, a 1 x 1 x 2 rectangular 

block. 
a) If the ant starts at a comer, where is the point farthest from it? (It is 

not the opposite comer!) 
b) Find two points that are farthest apart from each other on the surface 

of the dicube? 

952. Proposed by Peter A. Lindstrom, Batavia, New York. 
Let A, B, C denote the measures of the angles and a, b, c the lengths of 

the opposite sides of a triangle. Show that 

sinA sinB + sinB sinC + sinC sinA = 

(a + b + c)(b + c - a)(c + a - b)(a + b - c)(bc + ca + ab) 

4a2b2c2 
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Solutions 

910. [Spring 1997, Spring 1998] Proposed by William Chau, New York, 
New York. 

A triangle whose sides have lengths a, b, and c has area 1. Find the line 
segm~nt of ~inimum length that joins two sides and separates the interior of 
the tr1angle mto two parts of area a. and 1 - a., where a. is a given number 
between 0 and 1. 

ll. Comment by the Proposer. 
Since co~A = (b2 + C2

- al)/(2bc) and 1 = (1/2)bcsinA, then in Solution 
I we may wnte 

tan A = 1 - cos A = a 2 
- (b - c)2 = (a- b + c)(a + b- c) 

2 sinA 4 4 

Therefore, z = Ja.(a- b + c}(a + b- c) and the minimum length of MN is 

min(J cx(a -b + c)(a + b -c), Ja.(b -c +a}(b +c -a), Ja.(c -a+ b)(c +a- b)). 

914. [Fall, 1997] Proposed by Peter A. Lindstrom, Batavia, New York. 
Solve this base ten addition alphametic, dedicated to the memory of the 

late Leon Bankoff: 

FRIEND + INDEED = BANKOFF. 

Solution by Aaron Ke", student, Alma College, Alma Michigan. 
Clearly, B = 1, I* 0, R = 9 or 0, F is 2, 4, 6, or 8, D * 0 or 5, E * o, 

D * 9 and I ~ 9 because otherwise R = 9, too, and E * 9 since otherwise 0 
= 9, too. Suppose R = 0. Then there is no carry to the next column, so F + 
I~ 12 and I+ D < 10. Hence F * 2. IfF= 4, then D = 2 or 7 and I> 8 
making I+ D > 9. So F * 4. IfF= 6, then D = 3 or 8 and I~ 7, so a;ai~ 
I+ D > 9. Hence F * 6. Only F = 8 is possible. Then D = 4 or 9 and I~ 4. 
Now D = 4, so I= 5, K = 9, and A = 3. From the tens column Nand E are 
2 and 6. From the hundreds column E * 6, so E = 2 and 0 = 4 
contradicting that D = 4. Therefore, R * 0, so R = 9. ' 

. 
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From the hundred thousands column A s; 6 since neither addend can be 
9. Suppose F = 2. Then I= 7, A= 0, D = 6, Nand E are 8 and 3, and k = 
4. Then E = 8 and 0 = 7, contradicting that I= 7. 

Suppose F = 4. Then I= 5, 7, or 8, and D = 2 or 7. If I= 5, then A= 
0 and D = 7. Now Nand E cannot be evaluated. If I= 7, then D = 2 and A 
= 2 also. So I= 8 and A= 3. Now D = 2 or 7, neither one of which leads 
to available values for N and E. Hence we cannot have F = 4. 

We try F = 6. Then D = 3 or 8. If D = 3, then Nand E are 2 and 4, so 
0 = 4 or 8. Thus N = 2, E = 4, and 0 = 8. Now I = 5 or 7, and A = 2 or 4 
respectively. SoD* 3 and we set D = 8. Then Nand E are 0 and 5, or 2 
and 3. If I= 3, then A = 0, so I* 3. Similarly, if I= 5, then A = 2. So I= 
7 and A = 4. Now E * 0, 2, or 3 since then 0 = 0, 4, or 6. Similarly E * 5 

since then both N and 0 would be 0. 
Therefore, F must be 8. With this information the rest of the values fall 

into line quickly. We must have D = 4 and N + E = 8. So Nand E are 2 and 
6, or 3 and 5. From the thousands column, I ~ 5. From the hundred 
thousands column, I = 6 and A = 5 conflicts with N and E, so I = 7 and A 
= 6. Now N = 3, E = 5, and 0 = 0. Finally, K = 2. Cool. It works. We have 

897534 
+ 734554 

1632088. 

For an interesting demonstration of alphametics, check out the website 
http://www .ceng.metu.edu.tr/-selcuklalphametic/indexlhtml. This page is an 
alphametic solver. Put in any puzzle and it will give you all possible 

solutions. 

Also solved by Alma College Problem Solving Group, MI. Ben Andrews, Hendrix College, 

Conway, AR. Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, lA, Frank P. 
Battles, Massachusetts Maritime Academy, Buzzards Bay. Karen Bernard, Arkonsas Governor's 
School, Conway, Scott H. Brown, Auburn University, AL, PaulS. Bruckman, Edmonds, WA, Gcnafer 
Cantrell, Arkansas Governor's School. Conway, Yun Choi, Arkansas Governor's School. Conway, 
Jonathan D. Croft, Wilson Davis, Hendrix College, Conway, AR. Russell Euler and Jawad Sadek, 
Northwest Missouri State University. Maryville, Mark Evans, Louisville, KY. Stephen I. Gendler, 
Clarion University of Pennsylvania, Richard I. Hess, Rancho Palos Verdes, CA. Joe Howard, New 
Mexico Highlands University, Las Vegas, Tom Huynh, Arkansas Governor's School, Conway, Carl 
Ubis, University of Alabama. Tuscaloosa. Mimi Liu, Arkansas Governor's School, Conway, 
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Yoshinobu Murayoshi, Okinawa, Japan, Khai To, Arkansas Governor's School. Conway, and the 
Proposer. 

*915. [Fall, 1997] Proposed by the late John Howell, Littlerock, 
California. 

Prove or disprove that, if n ~ 0, k ~ 0, and n + k ~ 1, then 

n! =en+ k)"- (;)en+ k- It+ (;)en+ k- 2)"- ••• + e-tttn. 

I. Solution by Cecil Rousseau, The University of Memphis, Memphis, 
Tennessee. 

The conditions on k are unnecessary. Let L1 denote the difference 
operator: L1fex) = f(x + I)- f(x) . Then 

L1'Zj(x) = [f(x + 2)- f(x + I)]- [f(x + I) -f(x)] = f(x + 2)- 2f(x + 1) + f(x), 

L1lj(x) = f(x + 3) - 3f(x + 2) + 3f(x + 1) - f(x), 

and in general, 

ll"f(x) = E (-1)"-r(n)f(x + r). 
r =O r 

In view of the symmetric property {;) = {
11
:,) the right hand side of the 

given identity is seen to be 11"/(x) wheref(x) =X'. 
Clearly l1X' = (x + 1r - X' = nX'·' + Pn-2(x), where p

11
_
2
(x) is some 

polynomial in x of degree n- 2, L12X' = n(n- 1)X'"2 + p
11

_
3
(x), and so on. It 

follows by induction that L1nX' = n! for all x. 

Also solved by Scott H. Brown, Auburn University, AL, Paul S. Bruckman, Edmonds, WA, 
Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Richard I. Hess, 
RDncho Palos Verdes, CA. Murray S. Klamkin, University of Alberta, Canada, Carl Libis, University 
of Alabama, Tuscaloosa, Florian Luca, Syracuse University, NY. David E. Manes, SUNY College at 
Oneonta, Bob Prielipp, University of Wisconsin-Oshkosh, and H.·J. Seiffert, Berlin, Germall)l. 

Comment by the Editor. The proposer remarked "I am not sure if this is 
'well known' or not." Euler pointed out his article "Exponential Differences 
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Revisited," Journal of Recreational Mathematics, 24(1992) pp. 123-124. 
Libis referred to his University of Alabama doctoral thesis "Generalizations 
of Bernoulli and Other Polynomials," August 1998. Luca cited a talk by 
Sebastian Martin Ruiz of University of Sevilla at the First International 
Conference on Smarandache Notions in Number Theory in Craiova, 
Romania, August 1997, based on his ·paper "An Algebraic Identity. 
Consequence: Wilson's Theorem," submitted to The Mathematical Gazette. 
Prielipp mentioned Problem B-5 in the 1976 Putnam Mathematical 
Competition, The American Mathematical Monthly 85( 1978) pp. 29 and 32. 
Seiffert specified R. Wyss, "Losung von Aufgabe 983," Elem. Math. 
44(1989) pp. 48-49. It does appear that the formula is well known. 

and 

916. [Fall, 1997] Proposed by Morris Katz, Macwahoc, Maine. 
Prove these two formulas : 

Solution by Andrea Vujan, student, Wheaton College, Wheaton lllinois. 
Let A denote the left side of the first formula and B that of the second 

one. Then we have 

II II II II 

= E ;2<2n - i)2 = 4n2E i2 - 4nE ;3 + E ;4 
1=1 i=l i=l i=l 

16n5 n4 n n 3 2 
= -- + - - - = -(n + 1)(16n - n + n - 1) 

30 2 30 30 
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Next, let C =A - B. If n is even, we let n = 2k and then 

n/2 k 

c = 2 E (2i)2(2n - 2i)2 = 25 E ;2<2k - ;>2 

i = 1 i = 1 

= 2s( 16k
5 

+ k
4 

_ ..!.) = 16n
5 

+ n4 

30 2 30 30 
16n --
30 

So 

n4 n n B =A - C = -- + - = -[1 - (-l)"n 3]. 
2 2 2 

If n is odd, we let n = 2k + 1 and then 

(n -1)/2 k 

C = 2 E (2i)2(2n - 2i)2 = 25!: i 2(2k + 1 - 1)
2 

i= 1 i = 1 

= 2s( 8k
5 

+ 4k
4 

+ 4k
3 

+ 2k
2 

+ 2k) = 16n
5 

_ 16n. 
15 3 3 3 15 30 30 

Again 

. Also solved by Paul S. Bruckman, Edmonds, WA, Deborah CaJTillo, Wheaton College, JL, 
W111iam Chau, A T & T Laboratories, Middletown, NJ. Kennelh B. Davenport, Pittsburgh, PA. 
Russell Euler and Jawad Sadek (three solutions), Northwest Missouri State University, Maryville, 
Mark Evans, Louisville, KY. Richard I. Hess, Rancho Palos Verdes, CA. Joe Howard, New Mexico 
Highlands University, Las Vegas, Carl Lib is, University of Alabama, Tuscaloosa, Peter A. Lindstrom, 
Batavi~. '!Y, David E. Manes, SUNY Coffege at Oneonta, Yoshinobu Murayoshi, Okinawa, Japan, 
Bob Pnchpp, University of Wisconsin-Oshkosh, Monte J. Zerger, Adams State CoUege, Alamosa, CO, 
and the Proposer. 

917. [Fall, 1997] Proposed by Murray S. Klamkin, University of 
Alberta, Edmonton, Alberta, Canada. 
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Determine necessary and sufficient conditions on the real numbers w 1, 

w
2
, ... , w,. so that for all vectors V1 in E", 

I vi + v2 + ••• + v,. 12 ~ wl I vi 12 + w21 v212 + ••• + w,. I v,. 12· 

Solution by David Iny, Baltimore, Maryland. 
First observe that a necessary condition is that each w1 ~ 1 by taking 

exactly one v
1 

to be a nonzero vector. By ignoring the trivial case in which 
""" v = 0 we note that the inequality holds if and only if we replace each 
""1•1 I t 

vector v
1 

with vJ I v
1 

+ v
2 

+ ... + v,l. That is, the given inequality holds if 

and only if the minimum value of 
n 

f(v1, ... ,v,.) = Ewilvil
2

, 
i=1 

subject to the constraint I v 1 + v 2 + · · · + v,. I = 1, is /min ~ 1. The problem 
reduces to finding/min in terms of the w1• The obvious idea is to minimize the 

Lagrangian 

which is well posed when each w1 ~ 1. Taking partials, we find that 

Thus 

Then the given inequality holds if and only if 
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That is, if and only if 

II 1 
E- ~ 1. 
i•l W; 

Also solved by H.-J. Seiffert, Berlin, Germany, and the Proposer. Four incorrect solutions were 
also received. 

918. [Fall, 1997] Proposed by Murray S. Klamkin, University of 
Alberta_, Edmonton, Alberta, Canada. 

Evaluate the integral 

I. Solution by N R. Nandakumar, Delaware State University, Dover, 
Delaware. 

More generally, consider the integral 
a 

l(a) = jln(l + k tanx)dt, 
0 

where 0 < a < Tt/2 and k = tan a. With the substitution y = a - x the integral 
becomes 

0 d 

!(a)= -jln[l +ktan(a-y)]dy = Jtn(l +k tana-tany)dy 
a 0 1 + tana tany 

a ( 2 
) a 

= Jtn 1 
+ k dy = Jtno + k 2) dy - I(a). 

0 1 +ktany 0 

Thus we have 

a 

/(a) = .! Jtn(1 + k 2) dy = .!aln(l + k2). 
2 0 2 

Then, since k =tan (1t/3) = v3, we have 

fl/3 

/(1t/3) = J ln(l + /3 tanx) dx = 1t ln4 = 
0 6 

1t ln2 
3 . 
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II. Solution by Shiva K. Saksema, University of North Carolina at 
Wilmington, Wilmington, North Carolina. 

By letting u = Tt/3 - x we obtain a result that we shall need shortly: 

n/3 0 

jln[cos(Tt/3 -x)]dt = jln(cosu)(-du) 
0 Tl~ 

Now we have 

n/3 

= J ln(cosu) du. 
0 

~ ( ) ~ 1 = Jin (l/2)cosx + (.fJ/2)sinx dt = Jm(cos(Tt/3 - x))dx 
0 

(1/2)cosx 
0 

(1/2)cosx 

n/3 n~ f!/3 

= jln[cos(Tt/3 -x)]dt- Jin(cosx)dt + Jin2dt 
0 0 0 

f!~ 

= Jtn2dt = 1t ln2. 
0 3 

Ill. Solution by Joe Howard, New Mexico Highlands University, Las 
Vegas, New Mexico. 

By Math. Gazette, Note 70.24, vol. 70 ( 452) ( 1986) p.143, the 
trapezoidal method gives the exact value. Using the partition {0, 1t/6, Tt/3}, 
we have 

1t ( 1 ) 1t ln2 = 6 ln2 + 2ln4 = -3-. 

Also solved by Frank P. Battles, Massachusetts Maritime Academy, Buzzards Bay. Paul S. 
Bruckman (2 solutions), Edmonds, WA, Charles R. Diminnie and Roger Zamowski, Angelo State 

University, San Angelo. TX. Robert C. Gebhardt, Hopatcong, NJ. Richard I. Hess, Rancho Palos 
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Verdes, CA. David lny, Baltimore MD. Peter A. Lindstrom, Batavia, NY. Cecil Rousseau, The 
University of Memphis, TN. H.·J. Seiffert, Berlin. Germany, George Tsapakidis, Agrinio, Greece, and 
the Proposer. 

919. [Fall, 1997] Proposed by the Editor. 
Erect directly similar nondegenerate triangles DBC, ECA, F AB on sides 

BC, CA, AB of triangle ABC. At D, E. F center circles of radii k•BC, k•CA, 
k•AB respectively for fixed positive k. Let P be the radical center of the three 
circles. If P lies on the Euler line of the triangle, show that it always falls on 
the same special point. 

Solution by the Proposer. 
The power of a point P with respect to a given circle is the product of 

the signed distances from that point to any two points on the circle collinear 
with P. If the circle has radius r and center 0, then the power of P is equal 
to OP 2 

- r 2
• It is positive, zero, or negative according as P lies outside, on, 

or inside the circle. The radical axis of two given nonconcentric circles is 
the locus of all points P that have equal powers with respect to the two 
circles. It is a straight line perpendicular to their line of centers.lf the circles 
intersect, it is their common chord. The radical center of three circles with 
noncollinear centers is the point P having equal powers with respect to all 
three circles. It is the intersection of the three radical axes of the circles 
taken in pairs. 

Place triangle ABC in the complex plane so that its circumcircle is the 
unit circle centered at the origin 0. Then I a I = I b I = I c I = 1 and the 
affixes of the points on the Euler line for the triangle are m(a + b +c) for 
realm; the circumcenter has m = 0, the centroid is at m = 1/3, the center of 
the nine point circle is at m = 1/2, and m = 1 for the orthocenter, the meeting 
of the three altitudes. Let us suppose the radical center P is on the Euler line, 
so that P = m(a + b +c). There are complex numbers a. and 13, with a.+ 13 
= 1, such that d = a.b +Be, e = a.c + Ba, and/= a.a + Bb. Remember that 
the length of segment OZ, denoted I z - 0 I satisfies the equation I z 12 = zz. 
The power of P with respect to the circle centered at D is 

(PD)2
- (k·BCf = I m(a + b +c)- (a.b +Be) I z- I k(c- b) I z 

=[rna+ (m. a.)b + (m- B)c][ma + (m- a.)b + (m- B)c]- r(c- b)(c- b). 
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The powers of p with respect to the circles on E and F wil~ have similar 
· 'th a b and c permuted Since these expressiOns are to be 

expressiOns WI , • • • • L 
equal for all a, b, and c, then _!!ley must be symmetr1~ m a, .!!.• and c..:... et us 
look at the coefficients of ab and its two permutations be ~d ca m the 
displayed expression for the power given above. These coefficients must be 

equal, so we must have 

m(m-a) = (m-a)(m-B) + ~ = m(m-13). (1) 

Similarly, looking at the coefficie~ts of ba and its two permutations cb and 

aC. we obtain the conjugate equat10ns 

m(m. a) = (m _a )(m- B) + r = m(m • B). 

It follows that ex= 13 and, since a+ 13 = 1, then a,B = 112 ± ti for so~e real 
number t and hence the appended triangles must be isosceles. We rewnte the 

two coefficient equations as 

-2 ~ 
m(m-a) = (m-a)2 + ~ and m(m-a) = (m-a) + , 

which we subtract side for side to get 

m(a. - a.) =(2m - a- a)(cx- a.). 

Since a. + a = 1, this equation reduces to 

1 
m=-

3 

and we see that the radical center p is at the centroid of the triangle. Now 

substitute back into Equation ( 1) to get 

~ (~ - ") = ( 1 -"r + k2. 

~ ( 1 -~ + ri) = ( 1 -~ -ri r + k2. 
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which reduces to 

k2 2 1 Rl =t-- sok= t--
12' 12. 

Hence, for any value oft> 11Y'12, there is the corresponding value of k that 
places the radical center of the three appended circles at the centroid of the 
given triangle. · 

This problem is a generalization of Problem 408 by the same proposer 
appearing in vol. 6 (Fall 1978) pp. 554-556 of this JOURNAL. There, points 
D, E, and F were centers of squares erected on the sides of the triangle. 

*920. [Fall, 1997] Proposed by Richard I. Hess. Rancho Palos Verdes 
California. · 

The sorted Fibonacci sequence is produced by starting with the first two 
terms 1 and 1 and defining each succeeding term as the sum of the prior two 
terms with the digits sorted into ascending order. Thus we have 1, 1, 2, 3, 
5, 8, 13, 12, 25, 37, 26, ... This sequence eventually falls into a repeating 
cycle. 

a) Are there any two initial tenns that produce a diverging sequence? 
b) How many different repeating cycles can you find? 

I. Partial solution by Mark Evans. Louisville, Kentucky. 
I wrote a program to analyze this problem for all initial pairs where both 

numbers were less than I 0 I. I found convergence in every instance, with 467 
being the greatest number of initial tenns before repeating, occurring with 
the initial pairs (52, 84), (70, 66), (79, 84), and (97, 66). Each converged to 
the pair (15, 25), whose cycle has 24 tenns. In addition, I found 222 pairs 
which cycle back to themselves. Curiously, these cycles are all of length 3, 
8, 9, 24, 48, 96, or 120 only. 

Because this mechanism causes the numbers to shrink every time a zero 
digit is encountered in the sum, I strongly suspect but have not proved that 
a diverging case does not exist. As the sums get larger, say to 50 or more 
digits, the probability of there being a zero in the sum is nearly 1. Since 
some of the repeating cycles involve fairly large numbers, there are many 
more, perhaps infinitely many, repeating cycles. 
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Also partially solved by the Proposer. Contact the problems editor if you wish a copy of the 111 
pairs and their cycle lengths found by Evans and the 45 pairs found by the proposer 

921. [Fall, 1997] Proposed by Richard I. Hess. Rancho Palos Verdes, 

~~~ . . 
Place 13 three-digit square numbers in the spaces m the accompanymg 

grid. (The solution is unique.) 

Solution by Paul Yiu, Florida Atlantic University, Boca Raton, Florida. 
For uniqueness of solution, one must stipulate that ~he square nu~bers 

used are all distinct. Otherwise, there are 14436 solutions. We begm by 
listing all three-digit squares, the squares of 10 through 31 : 

100 121 144 169 196 225 256 289 324 361 400 
441 484 529 576 625 676 729 784 841 900 961 

We see that the tens digit cannot be 1 or 3, the hundreds digit is not 0, and 
the units digit must be 0, 1, 4, 5, 6, or 9. We shall t~ink ?f co?s~ucting the 
required grid by extending a hollow 3 by 3 matnx w1th d1stmct square 
numbers along its outer rows and columns. The only possibilities are the 

following matrices and their transposes: 

A = l: ~ ~} B = l: (

2 2 51 
c = 5 * 7 ' 

6 7 6 
(
3 2 4) 

D=6•0., 

1 0 0 : :l 
E = l~ ; ~} F ·l~ : :1- G = l: ~ 
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By considering the way these matrices are connected by their tens digit 
entries, we find that A and D can be extended only to the left, G only above, 
F to the left or below, and H only to the right or below. So none of A, D, 
F, G, H, and their transposes can be used. Among the remaining B, C, and 
E and their transposes, only sr and C can be connected, allowing just the 
two possibilities 

and 

It is easy to dispose of the first matrix. The first square in the middle 
row must be 625 since that is the only remaining square ending in 5. Now 
there is no way to complete the last square in the middle row since both 
squares beginning with 6 have been used. Only the second matrix remains. 
If we choose 784 for the last square in the second row, then the first square 
in the middle row must be 324 or 484. Since 3 cannot be a tens digit and 
since there is only one remaining square with 4 for its tens digit, namely 
841, the grid cannot be completed. 

It follows that the last square in the middle row is 729 and the last 
column is 196. The first square in the middle row is either 784 or 484. Since 
both squares with tens digit 7 have been used, we cannot have 784. Thus the 
middle row starts with 484 and the first column is 841. We have the 
following as the unique solution: 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, lA, William 
Barolet, Winona State University. Hayfield, MN, Lisa Blyth, Wheaton College, IL, Scott H. Brown, 
Auburn University, AL, Paul S. Bruckman, Edmonds, WA, Matt Bussey, Wheaton College, IL, 
Lindsay Coe, Arkansas Governor '.s School, Conway, Cindy Dang, Arkansas Governor's School. 
Conway, Kenneth B. Davenport, Pittsburgh. PA. Wilson Davis, Hendrix College. Conway, AR. 
Dierdre DeMeyer, Wheaton College, IL, Mark Evans, Louisville, KY. James Fells, Arkansas 
Governor's School. Conway, Krista Friesen, Wheaton College, /L, Stephen I. Gendler, Clarion 
University of Pennsylvania, Adam Groves, Wheaton College, IL, Anthony Hood, Arkansas 
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Governor's School, Conway, Tom Huyhn, Arkansas Governor's School, Conway, David lny, 
Baltimore MD. Louis Johnson, Kansas State University. Manhallan, Edward John Ko~lowska, Angelo 
State University, San Angelo, TX. Michael W. Lanstrum, Independence Communrty.College, KS, 

Andrea Lewis, Wheaton College. JL. Nicole Mathisen, Wheaton College. IL, Carter Pnce, Arkansa~ 
Governor's School, Conway, H.·J. Seiffert, Berlin, Germany, Sidney Vault, Arkansas Governors 

School, Conway. Nathan L. Williams, Wheaton College, IL, and the Proposer. 

922. [Fall, 1997] Proposed by David lny, Baltimore, Maryland. 
Suppose that f(f(x)) = 0 for all real x. Show t~at a neces~ary. and 

sufficient condition that ensures thatf(x) = 0 for all x 1s thatfbe mfimtely 

differentiable on the real line. 

Solution by Russell Euler and Jawad Sadek, Northwest Missouri State 

University, Maryville, Missouri. . . 
The following function shows that the proposal IS mcorrect. Let 

f(x) = e -ltx
1 for x < 0 and f(x) = 0 for x t!:. 0. 

If x < o, thenl(x) > O, so lif(x)) = 0. If x 2: 0, thenl(f(x)) = 1(0) = 0. s.o 
lif(x)) = o for all real x. Now, it is straightforward to show that I IS 

infinitely differentiable on the real line. However,f(x) * 0 for all.~ < 0.:_ 
For the proposal to be correct, the second sentence should be '/(~) - .o 

for all x if and only if lis (real) analytic on (-oo, oo)." We show that 1f I IS 

analytic on (-oo, oo) andlif(x)) = 0, thenl(x) = 0 for all real x. The other 

half of the proof is trivial. 
Assumef'(y) * 0 for some realy. Sincefis analytic, then('(x) * 0 on 

some closed interval [a, b] containingy. Now f(f(x)) = 0 for x m [a, b]. So 

/(f(x))·f'(x) = 0 and hence f'(/{x)) = 0 

for all x in [a, b]. Continuing in this fashion we find th~tf"><((x)) = 0 for 
all x in [a, b] and all positive integers n. Sincef([a, b]) ~san mter.:al [c, ~ 
(because f'(x) * o for all x in [a, b ]), f(x) = 0 for all x 1~ [c, d] .. Smce I IS 

analytic f(x) = 0 on (-co, oo) because the zeros of an analytic functiOn cann?t 
have an 'accumulation point unless the function itself is identically zero. ~h1s 
contradicts the assumption thatf'(y) * 0 for some real number Y· Thus! (x) 
= 0 for all real numbers x. So l(x) is constant and we have l(x) = 0 smce 

f (j(x )) = 0. 
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Also solved by Roger Zamowski and Charles Diminnie, Angelo State University. San Angelo, 
TX Three incorrect solutions were received. 

923. [Fall, 1997] Proposed by A. Stuparu, Valcea, Romania. 
Let S(n) denote the Smarandache function: if n is a positive integer, then 

S(n) = k if k is the smallest nonnegative integer such that k! is divisible by 
n. Thus S(l) = 0, S(2) = 2, S(3) = 3, and S(6) = 3, for example. Prove that 
the equation S(x) = p, where p is a given prime number, has just 2~" 1 

- 1 
solutions between p and p!. 

I. Solution by Cecil Rousseau, The University of Memphis, Memphis 
Tennessee. 

Let d(n) denote the number of divisors of n. The number of solutions of 
S(x) =pis d((p-1)!) since 

S(x) = p is equivalent to p I x and ; I (p - 1)!. 

For example, S(x) = 5 had d(4!) = 8 solutions, namely 5, 10, 15, 20, 30, 40, 
60, and 120, corresponding to the divisors 1, 2, 3, 4, 6, 8, 12, and 24 of 4!. 

II. Solution by PaulS. Bruckman, Edmonds, Washington. 
This problem is incorrectly stated and has an interesting (albeit 

confusing) history. To the best of this solver's knowledge, the problem first 
appeared in The Fibonacci Quarterly, vol. 32, no. 5 (Nov. 1994), p. 473, as 
Problem H-490. There, the problem was also incorrectly stated as in this 
problem, except that the number of solutions was incorrectly given as 2~"2 

instead of 2~" 1 • 
In a vol. 33, No.2 (May 1995), p. 187, the problem was reintroduced 

as H-490 (corrected) to indicate the number of solutions as d((p- 1)!), where 
d(n) is the number of divisors of n. This is indeed the correct formulation of 
the problem. 

The solution to the original H-490 problem was submitted by this solver 
and published in vol. 33, no. 5 (1995). This solution should be the final 
word on the subject. Interestingly, the original problem gives the correct 
values for p = 2, 3, and S only. This solver sincerely hopes that we can take 
a stick and beat this problem senseless, to the point where it may not once 
again resurface in some reincarnated form. 
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Editorial comment. This proposal was received in April of 1994 by this 
editor, who deserves SO lashes with a wet noodle for a misstatement i~ the 
number of solutions. 1 inadvertently omitted a "-1." The proposer had hsted 
the number of solutions as 2~" 1 

- 1, which, of course, is still incorrect. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha, lA, William 
Chau, A T & T Laboratories, Middletown. NJ, Mark Evans, Louisville, KY. Stephen I. Gendler, 
Clarion University of Pennsylvania. and H.-J. Seiffert, Berlin, Germany. 

*924. [Fall, 1997] Proposed by George Tsapakidis, Agrino, Gr~ece. 
Find an interior point of a triangle so that its projections on the stdes of 

the triangle are the vertices of an equilateral triangle. 

(. Solution by William H. Peirce, Rangeley, Maine. . . 
Let ABC be any triangle with sides a, b, and c and let P be any pomt m 

the plane of ABC. Then P is uniquely represented by P = M '!" ~ + vC 
where A. + J.l + v = 1 and that P is an interior po~nt if and onl~ tf A., ll• and 
v are each positive. Let R, S, and T be the projections of P on stdes a, ?• and 
c. The problem requires finding an interior point P of ABC so that tnangle 

RST is equilateral. See the accompanying figure. 

R 
Problem 924 

By standard analytic geometry we find that R. S, and T separate sides a, 

b. and c into the following segments: 

Side a: 

Side b: 

Side c: 

RC = (b cos C)A. + Oil, 

SA = (ccosA)Il + bv, 

TB = (a cos B)v + cA., 

RB = (c cos B)A. + av, 

SC = (a cos C)J.L + bA., 

TA = (b cosA)v + CJl. 
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Note that the pairs of segments, which are functions of A., jl, and v, add 
respectively to a, b, and c. Negative segments can occur. 

Now apply the law of cosines to triangles RCS, SAT, and TBR to get 

RS 2
:;: (sin2 C)[b2A.2 + (2abcosC)A.j.J. + trj.J.2}, 

ST
2 

= (sin
2 
A)[c2J.12 + (2bc cosA)J.Lv + b2v2], 

TR 2 = (sin2 B)[trv2 + (2ca cos B)vA. + c2A.2]. 

Next, set RS
2 = ST

2 
and ST 2 = TR 2 to force RSTto be equilateral, obtaining 

A.
2
b

2 
sin

2 
C - v

2
b

2 
sin

2 
A + 2A.J.lQb sin2 C cos C - 2J.Lvbc sin2 A cos A = 0 

and 

J.l
2
c

2 
sin

2 
A - A.

2
c

2 
sin

2 
B + 2jl.vbc sin2 A cos A - 2vA.ca sin2 B cos B = 0. 

(Setting TR
2 = RS

2 
produces a similar but redundant equation.) Now solve 

these two equations, along with A.+ J.1 + v = I for A., Jl, and v. If ABC is 
itself equilateral, then A.= J.1 = v = 1/3 and the one solution point obtained 
is P = (A + B + C)/3, the center of ABC. If ABC is not equilateral, we obtain 
two the solutions 

where 

c2 sin(C ±60°) 

D1.2 sine 

and H is the area of triangle ABC. Solution I uses all the plus signs, solution 
2 the negative signs. Note that D1D2 = [(d - b2) 2 + (c2 - d)2 + (b2 • c2) 2]/2. 
Now D, and D2 are positive for all ABC except D2 = 0 if ABC is equilateral. 
It follows that A.,, j.l..1, v1• A.z, Jl2 and v2 have the same signs as sin(A + 60°), 
sin(B + 60°), sin(C + 60°), sin(A- 60°), sin(B- 60°), and sin(C- 60°), 
respectively. 

The following comments complete the solution for all non-equilateral 
triangles ABC. Recall that P is an interior point of ABC if and only if A., jl, 
and v and all positive. 
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t. Point P2 is an exterior point of all triangles ABC because at least one 
angle, say A, of ABC is less than 60° and therefore A.;z < 0. See ~he 
accompanying figure. If an angle, say A, equals 60°, then A.;z = 0 and P2 hes 
on the extension of side a. 

2. There are three possibilities for the location of P 1: 

a) If each angle of ABC is less than 120°, then A.1, J.11, and v, are all 
positive and P 1 lies inside triangle ABC. . . 

b) If an angle, say A, is 120°, then A.1 = 0 and P1 hes on stde a . • 
c) If an angle, say A, is greater than 120°, then A.1 < 0 and P, IS 

exterior to triangle ABC. In cases 2a and 2b neither P, nor P2 are interior 
points, so the stated problem has no solution. 

II. Solution by the Editor. 
Using the notation of Solution I for the points A, B, C. P, R, S, and T, 

we place triangle ABC in the complex plane with the unit circle centered at 
the origin as its circumcircle. Thus I a I = I b I = I c I = 1, where lower 
case letters represent the complex affixes of the respective upper case points. 
We then have 

r = .!cb + c + p - bcp), s = .!cc + a + p - cap), 
2 2 

and 

t = .!.ca + b + p - abp). 
2 

Now RST is equilateral if and only if a 60° rotation, either positive or 
negative, carries side RS to side RT. So let z = cis 60° = ~os 60° : i sin 6.oo. 
Then z represents a positive 60° rotation and z the negat1ve rotatiOn. Settmg 

t- r = z(s- r) 

and simplifying, we get 

and hence 

p = 

- c-a'i-bz p = 
bc'i + caz - ab' 

c-az-hz = 

bcz + caz - ab 

ab - bcz - ca'i 
- ' az + bz - c 
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the las~ form being obtained by multiplying the preceding numerator and 
de~om1?ator by abc. :he second point P2 is obtained by interchanging z and 
z m th1s last expression. 

This de~ivation, :While much briefer than Solution I, does not explain 
when there 1s a solution to the given problem. 

Is 
A Is~ partially solved by Richard I. Hess, Rancho Palos Verdes, CA. One incorrect solution was 

a o recerved. 

925. [Fall, 1997] Proposed by Richard A. Gibbs, Fort Lewis Colle e 
Durango, Colorado. g ' 

Given positive integers s and c and any integer k such that o < k s 
prove that - s, 

(-1)"t(c+~-l)(j) = E<-1Y( s~c )(s+~-k)· 
J =lc c 1 k j =0 s + J- k J 

I. Solution by H.-J. Seiffert, Berlin, Germany. 
The identities 

'E' = n+l, n ( • ) ( 

j=m m m + 1) m, n e N0, n <!: m, (1) 

and 
/c 

'E. <-1Y(~) = <-l)"(m - t). '=O J k k, m, n e No, m > k, (2) 

~e w~ll known and easily proved. In fact, ( 1) can be verified by an easy 
mduct1on on n, and (2) by induction on m. 

Le~ L and ~ denote the left and right expressions in the given equation 
respectively. Smce ' 

( 
c + ~ - 1 )(j) = ( c + k - 1 )( c + j - 1 )· 

c 1 k c - 1 c + k - 1 
j = k, ... , s, 

from ( 1) with m = c + k - 1 and n = s + c - 1, after a suitable reindexing we 
find ' 

L = (-1)t(C + k- 1)(s +c)· 
c - 1 c + k 

(3) 
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Using 

( 
s ~ c )(s + j. - k) = (s + c)(c ~ k)• j = o, ... , k, 

s+J-k J c+k J 

then (2) with m = c + k gives 

R = (- 1>"(~: ~)(c + ~- 1} (4) 

From (3) and ( 4) it is clear that L = R. 

II. Comment by the Proposer. 
Consider a series of independent experiments where the result of each 

experiment is success or failure and the probability of success is p for each 
experiment. Let P 

1 
be the probability of getting exactly c successes in r or 

fewer tries, and let P 
2 

be the probability of getting at least c successes in 

exactly r tries. It is readily seen that 

whereas 

The interesting and somewhat surprising fact is that P 1 = P 2• Dividing P 1 and 
P 

2 
by p c and equating coefficients of p k in the resulting expressions yields 

(-1}" E (y-l)(y-c) = E<-1Y( r .Vr+j-.k-c). 
y=c+k c-1 k j=O k+c-JA J 

where 0 s k s r - c. Setting} = y- c in the left expression and s = r- c in 

both yields the proposed problem. 

Also solved by Paul S. Bruckman, Edmonds. WA. and Cecil Rousseau, The University of 

Memphis, TN. 
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926. [Fall, 1997] Proposed by Tom Moore, Bridgewater State College, 
Bridgewater, Massachusetts. 

Students were asked the question, "How many times is x:= x + 1 
executed in the following nested loop? 

Fori= 2 ton 

For j = I to LfJ 
x:= x +I 

Next} 
Next i 

Discover which of the following ten actual student answers are correct, 
where LJ is the floor function and fl is the ceiling function (so that l1tJ 
=3and r7tl =4): 

~ 
, n even 

a(n) = 
_-_I odd 

4 'n . ~ 
, n even 

b(n) = ~JL!!..:..!.J 
2 2 , n odd. 

c(n) 
J!f. n even 

= l(Y)(L~J + t). n odd. 
d<n> = L~JL 7 J. 

e(n) = L~J + L~J. f(n> = L~JI~l-

g(n) = L~J(L~J + [n (mod 2)]). h<n> = L nz 4+ 2j. 

i(n) = l :zJ. n 

j(n) = L L!J. 
A:=2 2 

Solution by Sean Williams, student, Alma College, Alma, Michigan. 
Solution e(n) is false; all others are correct. By executing the given loop 

structure for n = 2, 3, ... , 10, we find that x:= x + 1 is executed 1 2 4 6 
' ' ' ' 9, 12, 16, 20, 25 times, respectively. It is seen that the outer loop is executed 

n - 1 times and the inner loop Lk/2j for each k, 2 $ k $ n. This result is 
summarized by equationj(n): 
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j(n) = t l1J = 1 + 1 + 2 + 2 + 3 + 3 + ··· + l~J 
Recall that 

/c 

~> 
i=l 

If n is odd, sum (1) is 

1+1+2+2 

If n is even, the sum is 

1 + 2 + ... + k = k(k + 1) 
2 

+ ... + n-1 n-1 n-ln+1 
2 + -2- = -2-·-2-. 
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(1) 

n - 2 1+1+2+2+ .. ·+-- n - 2 n n - 2 n n n 2 

+ -- + - = --·- + - = -
2 2 2 2 2 2 4 

Each answer can now be compared with these results, considering odd and 
even cases when necessary. All are seen to be correct except e(n), which is 
false for even n, since, for example, e(6) = 12 butj(6) = 9. 

Also solved by Charles D. Ashbacher, Charles Ashbacher Technologies, Hiawatha. lA, PaulS. 
Bruckman, Edmonds, WA, William Chau, A T & T Laboratories, Middletown, NJ, Russell Euler and 
Jawad Sadek, Northwest Missouri State UnNersity, Maryville, Mark Evans, Louisville. KY. David 
Fullerton, Alma College, MI. Richard I. Hess, Rancho Palos Verdes. CA. Carl Libis, UnNersity of 
Alabama, Tuscaloosa. H.·J. Seiffert, Berlin. Germany, Mike Slater, Alma College, MI. and the 

Proposer. 

Corrections 

The editor apologizes for inadvertently omitting the following names 
from the also-solver lists for the following problems: Miguel Amengual 
Covas, Cal a Figuera, Mal/orca, Spain, problems 890, 891, 896, 898, and 
900; Yoshinobu Murayoshi, Okinawa, Japan, problem 854; Kenneth M, 
Wilke, Topeka KS, problems 849, 852, 854, and 857; and Rex H. Wu, 
Brooklyn, NY, problem 860. One incorrect solution to problem 860 was also 
received. 

Murray Klamkin pointed out errors in his solution to Problem ~53, vol. 
10 (Spring 1996) p.330. In the inequality beginning with S(m, n), d1splayed 
in the center of the page, the two exponents should be (2n- 1)/n and l/(2n), 
instead of (n- 1)/n and lin. 
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Problems Website Announcement 

p A ;ew dwebsite called MathPro Online has been developed by MathPro 

i~e~:'a,-~;~3 ego~ sm::lley Rabinowi~. It allows users to search electronically 
, pro ems from 42 JOUrnals and 22 contests. Its URL is 

http://problems.math.urnr.edu 

and was generously donated by Leon M. Hall Professor and o· t f 
Graduate Studies in the De ' . 1rec or o 
U . . f . . Partment of Mathematics and Statistics at the 

mversny o M1ssour1 - Rolla. 

Subscription and Change of Address 

If your address label contains the symbols "F98", then this is the last issue 
in your current subscription. We hope that you agree that the Journal provides 
good value and that you will renew your subscription. The rates are: 

United States: 

Foreign: 

Back issues: 

$20 for 2 years 
$40 for 5 years 

$25 for 2 years 

$5 each 

Complete volumes: $50 (5 years, 10 issues) 

All issues: $400 (9 back volumes and volume l 0) 

Ifyou have moved, please let us know. The Journal is not fonvarded so 
it is important that we have a current mailing address for you. 

To subscribe or change your address, complete the fom1 below (or a copy 
thereof) and send it, lvith a check payable to the Pi Mu Epsilon Journal for 
subscriptions, to 

Name: 

Joan Weiss 
Department of Mathematics and Computer Science 
Fairfield University 
Fairfield, CT 06430. 

----------------------- Chapter: -------
Address:----------------------------------------

Renewal: -------------- New Subscription: ----------

If address change, former address: --------------------
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CHAPTER REPORTS 

Professor Cathy Talley reported that the TEXAS ZETA Chapter 
(Angelo State University) co-sponsored seven mathematics forums during the 
year. Three student members of the chapter had solutions published in the 
Journal. 

Professor Joanne Snow reported that the INDIANA EPSILON Chapter 
(Saint Mary's College) was addressed by Underwood Dudley (DePauw 
University) at the deparbnent's annual Open House. The chapter performed 
various service activities during the year. 

Dr. David Sutherland reported that the ARKANSAS BETA Chapter 
(Hendrix College) was addressed by several guest speakers during the year. 
Their Undergraduate Research Program was very active. Six members of the 
chapter presented papers. Several students received awards at the Honors 
Convocation on May 20. 

Professor David Vella reported that the NEW YORK ALPHA THETA 
Chapter (Skidmore College) was addressed by William Swicker (Union 
College) at the first official event of the new chapter. The chapter has been busy 
establishing Bylaws. 
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The shirts are white, Hanes® BEEFY-J®, pre-sh~, 100~ ~on. The 
front has a large Pi Mu Epsilon shield (in black),~~ the l~e 1914-
.., .. below it. The back of the shirt has a "ll ME" ttlmg, des1gned b.y 
Doris Schattschneider, in the PME colors of gold, lavende~, ~d VIolet. 
The shirts are available in sizes large and X-large. The. pnce ~s only $10 
per shirt which includes postage and handling. To obtam a shirt, send 
your ch~ck or money order, payable to Pi Mu Epsilon, to: 

Rick Pass 
Mathematics-Pi Mu Epsilon 
St. Norbert College 
10 Grant Street 
De Pere, WI 54115 






