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THE PI MU EPSILON 100TH ANNIVERSARY PROBLEMS: PART I

STEVEN J. MILLER∗, JAMES M. ANDREWS† , AND AVERY T. CARR‡

As 2014 marks the 100th anniversary of Pi Mu Epsilon, we thought it would be
fun to celebrate with 100 problems related to important mathematics milestones of
the past century. The problems and notes below are meant to provide a brief tour
through some of the most exciting and influential moments in recent mathematics.
No list can be complete, and of course there are far too many items to celebrate. This
list must painfully miss many people’s favorites.

As the goal is to introduce students to some of the history of mathematics, ac-
cessibility counted far more than importance in breaking ties, and thus the list below
is populated with many problems that are more recreational. Many others are well
known and extensively studied in the literature; however, as our goal is to introduce
people to what can be done in and with mathematics, we’ve decided to include many
of these as exercises since attacking them is a great way to learn. We have tried
to include some background text before each problem framing it, and references for
further reading. This has led to a very long document, so for space issues we split it
into four parts (based on the congruence of the year modulo 4). That said: Enjoy!

1914

Martin Gardner
Few twentieth-century mathematical authors have written on such diverse sub-

jects as Martin Gardner (1914–2010), whose books, numbering over seventy, cover not
only numerous fields of mathematics but also literature, philosophy, pseudoscience,
religion, and magic. Today, he is best known as a recreational mathematician, a term
that reflects perhaps not the branches of mathematics he favored but the accessible
manner in which he presented them. As Gardner wrote in the introduction to his first
book of puzzles, Hexaflexagons, Probability Paradoxes, and the Tower of Hanoi,

There is not much difference between the delight a novice experi-
ences in cracking a clever brain teaser and the delight a mathemati-
cian experiences in mastering a more advanced problem. Both look
on beauty bare—that clean, sharply defined, mysterious, entrancing
order that underlies all structure.

A philosophy major at the University of Chicago, Gardner worked as a reporter,
yeoman in the Navy, and writer for a children’s magazine before writing his first
article for Scientific American in 1956. The publisher enjoyed the article and asked
Gardner to turn it into a monthly puzzle column, which would run for over twenty-
five years and spawn fifteen books, reaching and inspiring countless mathematical
hobbyists.

Centennial Problem 1914. Proposed by Byron Perpetua, Williams College.

The following problem is classic Gardner: easily stated and solvable without
advanced techniques, yet challenging and surprising. Take a solid sphere and drill a
cylindrical hole 6 inches long through its center (this means that the height of the
cylinder is 6 inches; the caps on the bottom and top, which are removed from the
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sphere when we drill our hole, are not counted). What is the sphere’s remaining
volume? One approach is straightforward but slow; the other is clever and skips
several computations. Hint: although the problem seems to be missing necessary
information, it likely wouldn’t be posed unless it had a unique solution. While it
requires some effort to prove that all possible realizations lead to the same answer,
there is a particularly simple case which you can compute easily.
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1918

Georg Cantor: 1845–1918
One of the greatest difficulties in mathematics is handling infinities; the subject

is so tricky that there are even some who prefer to never deal with such matters. The
results in the field can be quite surprising. For example, not all infinities are the same
size. This is a strange concept, and requires some preliminaries to define properly.
We say two sets A and B have the same size (or equivalently are the same cardinality)
if there is an invertible, one-to-one and onto function f : A → B; recall one-to-one
means distinct inputs are sent to distinct outputs, and onto means every element of B
is hit. Such a function allows us to put A and B in a one-to-one correspondence. For
example, if A is the set of all positive integers and S is the set of squares of positive
integers, both sets are infinite and both have the same number of elements, as we
can see by taking the function f to be f(n) = n2. What makes this result strange
at first is that while B is a proper subset of A, they can be put into a one-to-one
correspondence.

The smallest infinity is the cardinality of the natural numbers, which is equiv-
alent to the cardinality of the integers as well as that of the rationals. One of the
greatest mathematicians to study the infinite was Georg Ferdinand Ludwig Philipp
Cantor (see for instance [5]), born in 1845 in St Petersburg, Russia and died in Halle,
Germany in 1918. Cantor [1] proved in 1874 that there are ‘more’ irrational numbers
than rationals; equivalently, the cardinality of the real numbers is strictly larger than
the cardinality of the rationals. He gave a later proof in 1891 [2] where he introduced
his diagonalization method, which is now a staple in most analysis courses. An im-
portant consequence of these results is that the transcendental numbers have a larger
cardinality than the algebraic numbers. Algebraic numbers are roots of polynomials
of finite degree with integer coefficients; these include not just the rationals, but num-

bers such as 21/3, i =
√
−1, and

√√
3 +

√
5 (the three polynomials can be taken to

be x3 − 2, x2 + 1 and x8 − 16x4 + 4). Transcendental numbers are what remains.

Typically it is very hard to prove a given number is transcendental; we know some
special numbers such as π (first proved by Lindemann in 1882) and e (due to Hermite
in 1873) are. Liouville gave a construction in 1851 that proves certain numbers,
such as

∑∞
n=1 10

−n!, are transcendental (see, for example, [4]). His argument runs
as follows. If α is algebraic and is a root of an irreducible polynomial of degree d
with integral coefficients, one can show that we cannot approximate α too well by
rationals. Specifically, for any C there are only finitely many relatively prime rational
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numbers p/q such that |α − p/q| ≤ C/qd. If we could approximate α too well, the
only option for it is to be transcendental.

Centennial Problem 1918. Proposed by Steven J. Miller, Williams College.

While Cantor’s diagonal method is often described as an existential one and not a
constructive one, this is a misunderstanding of what he has done and very little work
is required to extract a number from his method; for more on this see the excellent
article by Gray [3]. As so many mathematicians have mistakenly believed that his
method is non-constructive, you are strongly encouraged to read Gray’s short note
and see exactly what Cantor did. This illustrates a common danger that can happen
when people read subsequent work and not the original.

If Cantor’s diagonal construction gives a transcendental number, it is interesting
to explore how different orderings of the algebraic numbers affect what new number
is constructed (see [3] for some computations along these lines). For this problem,
we instead observe that it is possible to modify Liouville’s construction to create
uncountably many transcendental numbers. In particular, find a one-to-one function
f : [0, 1] → [0, 1] such that f(x) is always transcendental. Can you find a continuous
function that does this? If yes, can you make your function differentiable?

As an aside, a natural additional question to ask concerns the distribution of the
sizes of the different infinities. We’ve said the rationals (or, it turns out, the algebraic
numbers too) are the lowest infinity, while the real numbers are a higher one. Are
there any sets of cardinality strictly between these two? To find out more about this,
look up the Continuum Hypothesis, finally resolved by Paul Cohen in 1963.
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[2] G. Cantor, “Über eine elementare Frage der Mannigfaltigskeitslehre”, Jahresbericht der
Deutschen Mathematiker-Vereinigung 1 (1891), 75–78.

[3] R. Gray, “Georg Cantor and Transcendental Numbers”, The American Mathematical Monthly
101 (1994), no. 9, 819–832. http://www.jstor.org/stable/2975129.

[4] S. J. Miller and R. Takloo-Bighash, “An Invitation to Modern Number Theory”, Princeton
University Press, 2006.

[5] J. J. O’Connor and E. F. Robertson, “Georg Ferdinand Ludwig Philipp Cantor”, MacTutor
History of Mathematics.
http://www-history.mcs.st-andrews.ac.uk/Biographies/Cantor.html.

[6] Wikipedia, “Continuum Hypothesis”, http://en.wikipedia.org/wiki/Continuum_hypothesis.

1922

Lindeberg condition
In probability theory a continuous random variable X has density fX if (1)

fX(x) ≥ 0, (2)
∫∞
−∞ fX(x)dx = 1, and (3) the probability X takes on a value between

a and b is the integral of fX from a to b. This is one of the most important applications
of integration: it allows us to find probabilities. One of the most important continuous
densities is that of the normal distribution. We say X is normally distributed with
mean µ and variance σ2 if its density is (2πσ2)−1/2 exp

(

−(x− µ)2/2σ2
)

. The more
names something has, typically the more important it is; we also call this density a
Gaussian, or say its the bell curve.

Given a random variable X let µX denote its mean and σX its variance. We can
standardize X by passing to (X − µX)/σX , which has mean 0 and variance 1. As
its name suggests, one of the most important theorems in the subject is the Central
Limit Theorem. This says that for appropriate random variables Xi, as n → ∞ if
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we set Yn = X1 + · · · +Xn then Zn := (Yn − µYn
)/σYn

converges to being normally
distributed.

The Central Limit Theorem has a long and rich history, with a perennial quest
to find the weakest possible conditions. In 1922 Lindeberg proved that a certain
set of conditions on the Xi sufficed to ensure convergence to a normal distribution.
Specifically, consider the following situation. Let Xk be a random variable on a
probability space, and assume the means µXk

and variances σ2
Xk

exist and are finite.
Let I(|Xk| ≥ ǫsn) be 1 if |Xk| ≥ ǫsn and 0 otherwise, and let E[· · · ] denote expectation
relative to the underlying probability space. If s2n =

∑n
k=1 σ

2
Xk

and for all ǫ > 0 we
have limn→∞

∑n
k=1 E[(Xk − µXk

)2I(Xk) ≥ ǫsn)]/s
2
n = 0 then Zn converges to a

Gaussian. If we additionally assume maxk σ
2
Xk

/s2n → 0 then this condition is also
necessary.

Centennial Problem 1922. Proposed by Steven J. Miller, Williams College.

Consider the following twist. Imagine that instead of caring about the sum X1 +
· · ·+Xn, we now only care about its value modulo 1; this means we look at its value
and subtract the greatest integer at most it. This cannot converge to a Gaussian as it
is only nonzero in an interval of length 1. What do you expect this sum to converge
to? What is the most general set of conditions required to ensure such convergence?
This problem is an important tool for understanding products of random variables, as
the distribution of a product is the sum of the logarithms. One particularly important
application is in Benford’s law (see the problem from 1938 or [2]).
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1926

Ackermann’s Function
In 1926 David Hilbert published an article on infinity, at that time still a somewhat

controversial topic in mathematical philosophy, in which he famously declared, “No
one will drive us from the paradise which Cantor created for us.” In this important
paper, Hilbert described a function discovered by his student Wilhelm Ackermann.
Ackermann was trying to unify arithmetic operations on natural numbers. Just as,
in some sense, addition is repeated counting, multiplication is repeated addition, and
exponentiation is repeated multiplication, one can continue to iterate each successive
operation to produce an even faster-growing one. Ackermann defined his function ϕ
of three variables recursively in such a way that ϕ(a, b, 0) = a + b, ϕ(a, b, 1) = a · b,
ϕ(a, b, 2) = ab, ϕ(a, b, 3) = aa

.
.
.
a

with b a’s in the exponent, and so on. The signifi-
cance from a mathematical point of view, explained in Ackermann’s subsequent paper,
is that this function is computable (the technical term is recursive) but only by using
dirty tricks like double recursion, unbounded loops, or the operator “the least n such
that.” (Functions that can be computed in a more straightforward manner, without
resort to such devices, are called primitive recursive.) The theory of computability
has grown to be a major branch of mathematical logic and theoretical computer sci-
ence; there are about 5000 papers in MathSciNet under the primary classification
03D (Computability and Recursion Theory). Obviously ϕ grows astronomically as its
arguments increase. Other authors later simplified the definition but kept the spirit.

http://arxiv.org/pdf/math/0607686v2
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The cleanest version is due to Raphael Robinson:

A(i, j) =











j + 1 if i = 0

A(i− 1, 1) if i > 0 and j = 0

A(i− 1, A(i, j − 1)) if i > 0 and j > 0.

To get an idea of how fast the function grows, note that A(2, 3) = 9, A(3, 3) = 61,
and A(4, 3) has about 1020000 decimal digits. One cannot begin to comprehend the
enormity of A(5, 3).

Because Ackermann’s function (in whatever variation) grows very rapidly, one
can form a kind of “inverse” function, α, of one variable, which grows so slowly that
for all practical purposes it is constant. This function turns out to play a role in the
analysis of algorithms. For example, although there is no linear-time algorithm for
managing a sequence of “union” and “find” operations on a collection n disjoint sets,
Robert Tarjan found a data structure such that these operations can be performed in
time O(n · α(n)).

Centennial Problem 1926. Proposed by Jerrold Grossman, Oakland University.

Here is a problem about a modification (pun intended) of the Ackermann function.
Let N denote the set {0, 1, 2, 3, . . .} of natural numbers, and for each integer n > 2
let Nn denote the set {0, 1, 2, . . . , n − 1} of natural numbers less than n. Define a
function An from N× Nn to Nn as follows:

An(i, j) =











j + 1 mod n if i = 0

An(i− 1, 1) if i > 0 and j = 0

An(i− 1, An(i, j − 1)) if i > 0 and j > 0.

If you play around with this function for various small values of n (make a table of
its values for small i and j), you will find that An(i, j) quickly becomes constant.
For example, A13(i, j) = 9 for all j once i ≥ 6. Prove or disprove that this behavior
happens for all n.
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1930

Ramsey Theory
“Suppose aliens invade the earth and threaten to obliterate it in a year’s time

unless human beings can find the Ramsey number for red five and blue five. We could
marshal the world’s best minds and fastest computers, and within a year we could
probably calculate the value. If the aliens demanded the Ramsey number for red six
and blue six, however, we would have no choice but to launch a preemptive attack.”
Paul Erdős.

There are many questions where we can easily set up a calculation to determine
the answer, but not only currently lack the computational power to perform it, but
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will lack the power for many years to come. A great source of such problems is
Ramsey Theory. Probably the most famous of these problems is the determination
of the Ramsey number R(m,n), which is defined as follows. Imagine there is a party
with N people, and in any pair of two people either both know each other, or neither
knows the other. Then R(m,n) is the smallest N such that, no matter whom knows
whom, there are either at least m people that all know each other, or there are at
least n people such that none of these n know anyone else in this set of n. Some
authors use like and dislike instead of know and don’t know. A nice calculation gives
R(3, 3) = 6 (and R(4, 4) = 18); Erdős’ quote is about R(5, 5) (which we know lies
between 43 and 49) and R(6, 6) (which is between 102 and 165). Ramsey Theory’s
mantra is “Complete Disorder Is Impossible;” given any large structure inside it lies
a small substructure which has strong structure. Unfortunately, there are often so
many cases to investigate that these problems cannot be solved by brute force attacks.
For example, we may associate a graph to the party problem, with the people as
vertices and connecting two people who know each other with an edge. The number

of possible graphs on N labeled vertices is 2(
n

2) = 2n(n−1)/2, which already exceeds
10200 for n = 40!

Centennial Problem 1930. Proposed by Joel Spencer, NYU, James M. Andrews,
University of Memphis, and Steven J. Miller, Williams College, based on the 1953
Putnam Mathematical Examination.

Six points are in general position in space (no three on a line, no four in a plane).
The fifteen line segments joining them in pairs are drawn and then painted, some
segments red, some blue. Prove that some triangle has all its sides the same color.
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1934

Khinchin’s Constant
Each real irrational number x has a unique continued fraction expansion, that is,

a representation of the form

x = a0(x) +
1

a1(x) +
1

a2(x) +
1

. . .

where the ai(x) are called the continued fraction digits of x. Continued fractions pro-
vide an alternative to base B (such as binary or decimal) expansions. The advantage
of continued fractions is that the expansion has no base, and thus there is a possibility
of the digits having some deep meaning.

A. Y. Khinchin proved the remarkable fact that, for almost every real number
x, the geometric mean of the first n digits in the continued fraction expansion of x
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converges to the same constant K as n → ∞ (i.e., limn→∞
n

√

a1(x)a2(x) · · · an(x) = K
for almost all x). The original proof used only elementary (but messy) measure theory,
while modern proofs are based on the mean ergodic theorem. This constant K is
known as Khinchin’s constant, with a numerical value of approximately 2.6854520010.
It is not known whether this number is rational, algebraic irrational, or transcendental,
nor do we know of a nontrivial example of any number x for which the geometric mean
of the ai(x)’s converges to Khinchin’s constant K, although numerical experiments
have shown π, γ, and Khinchin’s constant itself to be likely candidates.

Centennial Problem 1934. Proposed by Jake Wellens, Caltech.

A number is transcendental if it is not the root of a polynomial of finite degree
with rational coefficients; we know e and π are transcendental, and in fact almost
all numbers are transcendental. This problem explores some consequences of the
believed transcendence of K. Assume that K is transcendental, and let x be an
algebraic irrational of degree 2 (thus there are b, c ∈ Q such that x2 + bx + c = 0).
Prove that for any such x its geometric mean cannot converge to K. Thus, assuming
K is transcendental, we know a bit about the structure of the almost nowhere set of
numbers whose geometric mean doesn’t converge to Khinchin’s constant.
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1938

Benford’s law
The next time you’re in a boring meeting or class, calculate the first N Fibonacci

numbers (for as large an N as you can) and see what percentage have a first digit of
d for each d ∈ {1, . . . , 9}. While it’s natural to guess that all digits are equally likely,
the answer is far from that. Almost 30% of these numbers start with a 1, while only
about 4.5% begin with a 9; in general, the probability of a first digit of d is log10

d+1
d .

The Fibonaccis are not an isolated oddity; many mathematical and natural data sets
exhibit this bias, which is now known as Benford’s law. One of the more interesting
applications of it is to detect tax fraud. The reason it is so successful is that people
are typically horrible random number generators, not putting in enough of the right
patterns. For example, if we toss a fair coin 100 times most people know there should
be about 50 heads and 50 tails, but they don’t know what the longest run of heads
or tails should be, or how many alternations between runs of heads and runs of tails
should occur. The same is true in creating fake data entries; people are more likely
to spread out the leading digit equally from 1 to 9, or concentrate near 5, in the
mistaken belief that this makes the data look more plausible. This is now a vast
literature on Benford’s law and its applications; it surfaces in accounting, computer
science, dynamical systems, economics, finance, geology, medicine, number theory,
physics, psychology, statistics, ....

A terrific explanation of Benford’s law of digit bias is that there is no bias, pro-
vided we look at the data the right way. Specifically, a data set {xn} is Benford if
and only if {yn := log10 xn} is equidistributed (or uniformly) distributed modulo 1;

http://archive.numdam.org/ARCHIVE/CM/CM_1935__1_/CM_1935__1__361_0/CM_1935__1__361_0.pdf
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this means for any [a, b] ⊂ [0, 1] we have

lim
N→∞

#{n ≤ N : log10 xn mod 1 ∈ [a, b]}
N

= b− a.

To see why this is true, note that if y ≡ y′ mod 1 (which means that y and y′ differ
by an integer), then 10y = 10y

′+k = 10y
′

10k for some integer k. This immediately
implies that 10y and 10y

′

have the same leading digits, as the only difference between
these two numbers is the location of the decimal point. Thus if the sequence {yn}
is uniformly distributed modulo 1, the probability yn ∈ [0, log10 2] is just log10 2;
however, these are precisely the numbers whose first digit is 1 (as 0 exponentiates
to 1 and log10 2 exponentiates to 2), and log10 2 is the Benford probability of a first
digit of 1. One of the easiest sequences to show is Benford is xn = αn for log10 α
irrational, as by Weyl’s Theorem nβ is equidistributed modulo 1 if β is irrational (and
thus yn = log10 xn = n log10 α is uniformly distributed modulo 1 so long as logα is
irrational).

Centennial Problem 1938. Proposed by Steven J. Miller, Williams College.

The sequences {2n} and {3n} are both Benford; what about the sequence {2m3n}?
For this sequence, we write the numbers in increasing order; thus it begins 1, 2, 3, 4,
6, 8, 9. More generally, is {pmqn} Benford for p and q disjoint primes?
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1942

Zeros of ζ(s)
One of the most important functions in number theory is the Riemann zeta func-

tion, ζ(s). Initially defined for Re(s) > 1 by ζ(s) =
∑∞

n=1 n
−s, using the Funda-

mental Theorem of Arithmetic (which states every integer can be written uniquely
as a product of prime powers) we see that this sum also equals

∏

p prime(1− p−s)−1.
This relation highlights the central role it plays in studying the primes. The integers
are extremely well understood; there are no mysteries left in their distribution! The
product relation above connects the integers to the primes, and allows us to pass from
knowledge of the integers to knowledge of the primes. For example, the divergence of
∑∞

n=1 1/n implies the infinitude of primes, as does the fact that
∑∞

n=1 1/n
2 = π2/6

(if there were only finitely many primes, the product would be rational at s = 2,
implying that π2 is rational, which is false).

Though others had studied this function first, it is named after Riemann because
of his seminal investigations in 1859. He related the distribution of zeros of ζ(s) (or
more precisely its meromorphic continuation to the entire complex plane to a function
differentiable everywhere except at s = 1, where it has a simple pole of residue 1) to
estimates on the number of primes at most x, which we denote by π(x). One quickly
shows this continuation satisfies a functional equation, relating its values at s to those
at 1 − s. A little work shows this extended function vanishes only at the negative
even integers (these are called the trivial zeros), and at countable many points whose
real part is strictly between 0 and 1 (these are called the non-trivial zeros). It is the

http://www.jstor.org/discover/10.2307/984802?uid=3739552&uid=2&uid=4&uid=3739256&sid=21103164625091
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location of the non-trivial zeros that govern the main terms in our error estimations of
the number of primes π(x). The Riemann Hypothesis, one of the seven Clay Millennial
Problems, asserts that the non-trivial zeros all have real part equal to 1/2. Up to some
logarithms, if Li(x) =

∫ x

2 dt/ log t then if the largest real part of a zero of ζ(s) is θ

then |π(x)− Li(x)| is essentially of size xθ. As a non-trivial zero at ρ implies 1− ρ is
also a zero, we see the error is as small as possible if the Riemann Hypothesis is true.
This error being small has enormous consequences throughout mathematics and its
applications (especially in cryptography).

Hardy (in 1914) was the first to prove there are infinitely many zeros on the
critical line Re(s) = 1/2, though he was not able to prove a positive percentage lie on
the line. That changed in 1942, when Selberg showed a small, but positive, percentage
of zeros of ζ(s) are on the critical line. A major advance came in 1974 with the work
of Levinson, who proved more than a third of these zeros are on the line. The best
results today are around 40%; there is still a long way to go!

Centennial Problem 1942. Proposed by Steven J. Miller, Williams College.

What is wrong with the following “proof” that the Riemann zeta function does not
vanish if Re(s) > 1/2? We start with the result that there is an analytic continuation
for ζ(s), and if ξ(s) := π−s/2Γ(s/2)ζ(s) then ξ(s) = ξ(1− s). Warning: the proposer
does not believe this is a proof, nor does he believe this argument can be salvaged!

1. For each prime p let hp(s) = (1 − p−2s)−1/(1 − p−s)−1. Note hp(s) is never
zero or infinity for Re(s) > 0.

2. Let ζ2(s) := h2(s)ζ(s). The analytic continuation of ζ2(s) is simply h2(s)
times the analytic continuation of ζ(s). Further, ζ2(s) and ζ(s) have the
same zeros for Re(s) > 0. Note

ζ2(s) =
(

1− 2−2s
)−1 ∏

p≥3

(

1− p−s
)−1

.

3. Similarly set ζ3(s) = h3(s)ζ2(s), and observe in our region ζ3(s) and ζ2(s)
(and hence also ζ(s)) have the same zeros. Note

ζ3(s) =
(

1− 2−2s
)−1 (

1− 3−2s
)−1 ∏

p≥5

(

1− p−s
)−1

.

4. We continue this process, working initially in the region Re(s) > 2 so that
everything converges uniformly. We let ζ∞(s) be the limit of ζp(s) as p → ∞.
Note this limit exists when Re(s) > 2, and equals ζ(2s).

5. As ζ(2s) has an analytic continuation which doesn’t vanish for Re(s) > 1/2
(since ζ(s) does not vanish if Re(s) > 1), each ζp(s) also does not vanish for
Re(s) > 1/2. As all these functions have the same zeros in this region, none
of them vanish for Re(s) > 1/2. Thus ζ(s) does not vanish in this region,
and hence the Riemann Hypothesis is true.
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1946

Monte Carlo Method
While today it is hard to gaze around a room without seeing a computer, from

a smart phone to a thermostat to keyreaders on hotel doors, the situation was very
different during WWII. Computers were in their infancy, and were rare, expensive and
big. Early computers could fill an entire room, and had enormous power demands.
A major leap in their usefulness came when people realized that they could be used
for far more than computing exact answers to specific problems by going through the
algebra, but additionally could approximate the answers to difficult problems through
extensive simulations. This led to what is now called the Monte Carlo method. The
quote below is from the excellent history piece [1] (and in 2013 led off the ‘history’
section of the Wikipedia article [4]).

The first thoughts and attempts I made to practice [the Monte Carlo
method] were suggested by a question which occurred to me in 1946
as I was convalescing from an illness and playing solitaires. The
question was what are the chances that a Canfield solitaire laid out
with 52 cards will come out successfully? After spending a lot of
time trying to estimate them by pure combinatorial calculations, I
wondered whether a more practical method than “abstract thinking”
might not be to lay it out say one hundred times and count the number
of successful plays. This was already possible to envisage with the
beginning of the new era of fast computers, and I immediately thought
of problems of neutron diffusion and other questions of mathematical
physics, and more generally how to change processes described by
certain differential equations into an equivalent form interpretable as
a succession of random operations.

Monte Carlo techniques are now used to approximate the solution to numerous
problems. Rather than finding exact answers, we can frequently simulate millions, or
billions, of cases and use that to glean with high probability an excellent approxima-
tion to the true answer. An early application was to nuclear reactions, where scientists
would approximate both the trajectories of neutrons and the numbers released in each
collision. A closer to home example is integration, which not surprisingly goes by the
name of Monte Carlo integration. One of the biggest misconceptions about mathe-
matics comes from Calc I and II. There students learn how to find areas by integrating,
and flushed with success after success leave thinking integration isn’t that much worse
than differentiation. Nothing could be further from the truth. Teachers have to work
very hard to find functions that have nice anti-derivatives; a general function won’t
have a closed-form expression for its integral.

For example, imagine we want to find the volume of a region R in n-dimensional
space (this is extremely important in finance, where we might be trying to figure out
the value of a loan over several periods). For simplicity assume R lives inside the
n-dimensional unit box [0, 1]n, and assume that it is easy to tell if a point is in the
region or not. Then all we have to do is uniformly choose N points in the box [0, 1]n,
and whatever fraction lies in R is our approximation to its volume. The Central Limit
Theorem not only assures us that this is a good approximation, for large N it gives us
bounds on the size of the error. For a concrete example, imagine f(x) = sin(π sin(πx))
for 0 ≤ x ≤ 1; it’s very easy to tell if a point (a, b) ∈ [0, 1]2 lies above the x-axis and
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below the curve y = f(x), but we have no simple, closed-form expression for the
anti-derivative of f .

Centennial Problem 1946. Proposed by Steven J. Miller, Williams College.

One of the most important steps in the Monte Carlo method is the ability to
choose numbers randomly. If you haven’t thought about how hard it is to do something
truly random, you may be surprised at how hard it is to truly generate a sequence of
points uniformly. Frequently one generates a sequence of quasi-random points through
a deterministic process, which is often good enough for applications. A popular, early
method is the von Neumann middle square digits method, described with some nice
references in the ‘Random numbers’ section of [2]. Given an n digit number, square it
to get a 2n digit number. Our random number is the middle n digits. We then square
that, take the middle n digits of the new product, and obtain our next ‘random’
number. We continue the process, generating our sequence of numbers. For example,
if we start with 4321 our next number is 6710 as 43212 = 18671041, which is then
followed by 241.

It’s easy to see this process cannot generate numbers uniformly at random, even
if we restrict ourselves to numbers from 0 to 10n − 1. The reason is simple: this
process generates a periodic sequence! In other words, after at most 10n− 1 terms we
have a repeat, at which point the pattern repeats since all future terms are completely
determined from any previous starting value.

This suggests our questions. For each n, what is the shortest period? The longest?
How many of the 10n elements have this shortest (or longest) period? Can you give
an example? Hint: if you can’t solve this problem exactly, can you approximate the
answer using Monte Carlo techniques?
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1950

Arrow’s Impossibility Theorem
Kenneth J. Arrow was awarded the Nobel Prize in Economics in 1972. Among

his contributions cited in the Nobel Prize Committee’s decree was the “possibility
theorem” from Arrow’s doctoral dissertation on social choice theory, or voting theory,
that was published as the book Social Choice and Individual Values [1, 2, 3]. Arrow
set out to determine the best election procedure, attempting to narrow the set of all
procedures by requiring the procedures to satisfy a number of desirable properties.
These properties were called axioms because they represented what Arrow believed
were, in some sense, the most natural properties that an election procedure should
satisfy. Arrow showed that no election procedure satisfies these reasonable axioms
(which we describe below) when two or more voters decide among three or more
candidates. His result is now referred to as Arrow’s Impossibility Theorem, and
means that we cannot find a voting system which satisfies three conditions which
most people would agree are all fair requirements.

http://library.lanl.gov/cgi-bin/getfile?00326867.pdf
http://library.lanl.gov/cgi-bin/getfile?00326866.pdf
http://www.jstor.org/stable/2280232
http://en.wikipedia.org/wiki/Monte_Carlo_method


588 MILLER, ANDREWS and CARR

Assume that each of m ≥ 2 voters can rank order n ≥ 3 candidates, listing them
from most preferred to least preferred. An election procedure aggregates the voters’
rankings, producing a societal ranking of the candidates. Although all of Arrow’s
axioms are necessary, Independence of Irrelevant Alternatives is often viewed as the
most stringent. A version of Arrow’s theorem from 1963 (the second edition of [1])
says that there is no election procedure that satisfies the following three axioms.

• Pareto condition: If every voter prefers A over B then the group ranks A
above B.

• Non-Dictatorship: There is not a single voter who is able to determine the
group’s rankings (i.e., there is no dictator).

• Independence of Irrelevant Alternatives (or IIA): The societal ranking be-
tween candidates A and B should only depend on the voters’ preferences for
A and B. To rank A and B, it is irrelevant to factor in how the voters rank
other candidates. For example, suppose that the society ranks A above B
and C. If some voters decide to change their ranking of B and C, then it
should not affect the societal ranking of A and B: A should still be ranked
above B.

A weaker and easily accessible version of Arrow’s Impossibility Theorem requires
just two axioms, IIA and the Condorcet Winner Criterion (CWC), but also supposes
that the election procedure returns a top-ranked candidate; see [4, p.343] for details.
An election procedure satisfies the CWC axiom if it always has the Condorcet winner
top ranked, if a Condorcet winner exists. A candidate is the Condorcet winner if it
defeats every other candidate in a pairwise election (by being preferred by more than
half of the voters to every other candidate in a head-to-head competition). However,
not every collection of voters’ preferences has a Condorcet winner, as demonstrated
below.

Condorcet cycle: Suppose three voters have the following preferences for candidates
A, B, and C.

voter 1 voter 2 voter 3
A B C
B C A
C A B

In an election between A and B, A would defeat B in a pairwise election (denoted
by A ≻ B) because A would receive two votes (from voters 1 and 3), while B would
receive only one vote (from voter 2). Similarly, B would defeat C in a pairwise election
and C would defeat A. Notationally, this is represented by A ≻ B ≻ C ≻ A and is
referred to as a Condorcet cycle. Condorcet cycles can have more candidates, too,
such as A ≻ B ≻ D ≻ E ≻ C ≻ A.

Centennial Problem 1950. Proposed by Michael Jones, Mathematical Reviews.

It is possible to show that an election procedure satisfying IIA and CWC cannot
return a single, top-ranked candidate for the above three-voter Condorcet cycle. This
idea can be extended to top cycles: In an election between n candidates, call a set
of candidates C a top cycle if the candidates in C all defeat the candidates not in C
in pairwise contests and there is a Condorcet cycle among all candidates in C. (For
example, the Condorcet cycle for the three-voter, three-candidate case above is a top
cycle.)

For three candidates, there are two possible top cycles, involving all three candi-
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dates: A ≻ B ≻ C ≻ A and A ≻ C ≻ B ≻ A. For n-candidate elections, how many
top cycles are possible?
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1954

Kolmogorov-Arnold-Moser Theorem
The Kolmogorov-Arnold-Moser Theorem is concerned with the behavior of sys-

tems under small perturbations (see [1, 5, 6], as well as the forthcoming book by H.
Scott Dumas, “The KAM Story: A Friendly Introduction to the Content, History,
and Significance of Classical Kolmogorov-Arnold-Moser Theory”). The first set of
results are due to Andrey Kolmogorov in 1954, which were then extended in 1962
by Jürgen Moser and further developed by Vladimir Arnold a year later. The the-
orem arises as a partial solution to a fundamental question in perturbation theory.
Applied mathematicians and scientists use the tools of perturbation theory to infer
information or solutions to problems modeling dynamical systems under the influence
of gravitational or quantum forces. For instance, the planet Neptune was discovered
in 1846 as a result from calculations made by the French mathematician Urbain Lev-
errier and mathematician-astronomer John Couch Adams, based on the perturbations
of the planet Uranus due to the gravitational influence of the then unknown Neptune.
This was a momentous day in the history of science, where mathematicians correctly
told astronomers where to point their telescopes to see the first new planet since 1781!
See [7].

Around the turn of the 20th century Henri Poincare, expanding on the work
of the problem of small denominators by astronomer Charles-Eugéne Delaunay, first
postulated that small perturbations can have large effects on a dynamical system.
In popular culture, this is known as “chaos” or the “butterfly effect”. Essentially,
the Kolmogorov-Arnold-Moser Theorem provides criteria in which a system of partial
differential equations (those equations which model dynamical systems) will have only
mild “chaotic” behavior under small perturbations.

Centennial Problem 1954. Proposed by Avery T. Carr, Emporia State University,
and Steven J. Miller, Williams College.

A key ingredient in KAM theory is the irrationality type of certain parameters.
Briefly, this means how well we can approximate our number by rational numbers. In
most investigations it is important to choose a good metric to measure the quantities
of interest. In this problem, we need a notion of how well approximable an irrational
is by rationals. We can clearly get as good of an approximation as desired simply
by taking more and more decimal digits; thus our notion cannot just be how far
our rational is from our number. It turns out to be very useful to measure the
“cost” of approximating our number by the size of the denominator used. This is a
reasonable notion, as a small difference using a small denominator is more impressive
than the same difference with a larger denominator. For example, if we want π
(which is approximately 3.14159265358979311599796346854) to 6 decimal places we
could use 31415926/10000000; however, notice that 355/113 does as well but with a

http://www.jstor.org/stable/j.ctt1nqb90
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significantly smaller denominator (this rational is about 3.14159292). These excellent
approximations can be found through the theory of continued fractions; see [2, 3, 4].

The formal definition is that an irrational number α is of type (K, ν) (for positive
K, ν) if |α− p/q| > K/qν for all integers p, q. In other words, we cannot approximate
α too well by rationals. The following problem assumes some familiarity with measure
theory and the notion of length of a subset of the real line; for a brief introduction of
these ideas see Appendix A.5 of [4].

• Prove that for any irrational α there exist infinitely many relatively prime
pairs of integers p, q such that |α− p/q| < 1/q2. This is known as Dirichlet’s
theorem, and implies that every irrational number can be approximated fairly
well.

• Consider all irrational numbers in [0, 1] of type (1, 2 + ǫ) for a fixed ǫ > 0.
What is the measure of such numbers? Note that it is sufficient to study
irrational numbers in [0, 1], as we can always subtract an integer to translate
to this interval. More generally, what is the measure of all irrational numbers
in [0, 1] that are of type (K, 2+ ǫ) for a fixed ǫ > 0 (so K is allowed to vary)?
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1958

Smale’s paradox
There are many remarkable results in topology which are counter-intuitive. One

of the most famous is our 1924 entry, the Banach-Tarski Paradox, where a unit sphere
is split into finitely many disjoint pieces which are then rotated and translated to form
two unit spheres! Such a result appears to violate our notions of volume. Smale’s
Paradox carries the same flavor of conceptual wonder in the form of sphere eversion.

Imagine having a sphere composed of a material that can pass through itself.
Without puncturing or creasing the material, is it possible to turn the sphere in-
side out? Remarkably, the answer is yes and the American mathematician Stephen
Smale proved it in 1958 [1]. This elegant existence proof was not easy to visual-
ize geometrically. It was through the endeavors of many others, including Arnold
Shapiro and Bernard Morin, in which the first geometric representation of a sphere
eversion emerged. In particular, William Thurston discovered a very clever explicit
construction, known as Thurston’s corrugations. Using the methods of Thurston’s
corrugations, the sphere is corrugated and the top and the bottom of the sphere are
pulled through each other without creasing due to the geometry of the corrugations
permitting the “turning”. An excellent introduction to the topic, including a visual-
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Fig. 1. A picture of the Morin surface (from [5]), which can arise when everting the sphere.

ization of the eversion, is available online at [4]; this problem clearly belongs in the
“a picture is worth a thousand words” camp (see Figure 1).

Centennial Problem 1958. Proposed by Avery T. Carr, Emporia State University,
and James M. Andrews, University of Memphis.

Smale’s unexpected result brings to question the possibility of everting other
shapes. Consider a circle governed by the same rules as the sphere from Smale’s
Paradox. The circle is composed of a material that can pass through itself, but
cannot be punctured or creased. Is it possible to evert the circle? What about a
torus? More generally, what about a hypersphere in n dimensions?
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1962

The Gale-Shapley Algorithm and the Stable Marriage Problem
David Gale and Lloyd Shapley initiated the formal study of stable matchings, and

the topic continues to generate significant applications and open questions. One of the
most important applications of these ideas is to the National Resident Match Program
(NRMP) that matches hospitals and medical students for their residencies. In 1998 the
NRMP changed the matching algorithm in response to concerns of fairness. Finding
stable matchings that meet various fairness criteria remains challenging and depends
upon the study of intricate relationships revealed in posets imposed on multiple stable
matchings.

A matching is called stable if no two people prefer each other to their assigned
partners, and thus no two people have a reason to switch amongst themselves. We
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often have two groups, and every person in one group must be matched with someone
in the other; of course, for applications like the NRMP one of the groups would be
hospitals and not people, but for notational convenience we often refer to both sides
as people. For each person we list their preferred ordering of their options; we can
combine all of this into two preference matrices, one for each of the two groups.

The Gale-Shapley algorithm is a very efficient proposal algorithm. Given two
preference matrices, it finds stable matchings; as one of the original applications was
to marrying n men to n women, these are often called stable marriages. Its worst-case
complexity is O(n2), which means the number of steps needed is at worst proportional
to the square of the size of each group. It always returns at least one stable matching,
and at most two of them no matter what set of preferences are given.

Suppose we have a group of n men and a group of n women who want to be
matched. Let the men, in turn, propose to the women each of whom either accepts
each proposal or breaks off a previous engagement if a better proposal comes along.
To be more precise, below are the steps of the Gale-Shapley (GS) algorithm.

1. In the first round, each man proposes to the woman he prefers. Each woman
considers all the proposals she receives. She provisionally accepts the proposal
coming from the man she ranks highest among those who have proposed to
her, and rejects all the other proposals.

2. Each unengaged man now proposes to the woman he prefers among the
women he has not previously asked to marry him (i.e., once a woman re-
jects a man he never asks her again), regardless of whether or not she has
provisionally accepted a proposal. Each woman considers all the proposals
she receives, and provisionally accepts the proposal coming from the man she
ranks highest among those who have proposed to her, and rejects all the other
proposals.

3. We keep repeating step 2, with the unengaged men asking and the women
provisionally accepting, until all men are provisionally engaged. At this point
all the provisional engagements become permanent and we have obtained a
matching between the men and women.

The proof that this algorithm always results in at least one stable matching is
constructive. Once a woman provisionally accepts a proposal she can only stay the
same or trade-up; she is never unmatched. For the men, if a man has been unsuccessful
he then proposes to someone new; as there are the same number of men and women
there must be at least one available woman who hasn’t received any offers and thus
must accept his. Each man remains paired with a woman he prefers unless that woman
receives a better offer, and every woman is given the option of choosing among the
men that prefer her.

When the Gale-Shapley algorithm finds two stable matchings it is because the
matching resulting from having one group do the proposing differs from the matching
obtained when the other group does the proposing. If two distinct stable matchings
are returned by the algorithm, each is optimal for the group doing the proposing. For
example, if the men propose, each man will fare at least as well as he would in the
matching obtained by having the women propose.

Current attention is focused on what happens when there are many more than
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two stable matchings possible. Depending on the preference matrices, many stable
matchings can exist, and in these cases they must be found with other algorithms.
Given all the stable matchings for a particular problem instance have been found,
Christine Chen and her colleagues recently proved a nice relationship holding for lo-
cal and global aspects of the set of matchings.

Global Median Matching (GMM): Impose a partial ordering on the set of stable
matchings according to the rule that one matching is better than another if every
man (or symmetrically every woman) receives at least as good a partner in the former
matching as in the latter matching. The resulting poset terminates at one end in
the man-optimal matching and at the other end in the woman-optimal matching. A
GMM matching is a matching that lies a median number of steps from these extreme
matchings.

Local Median Matching (LMM): Consider for each man (and similarly for each
woman) the ordered set of all the rankings of the partners he is assigned in all the
stable matchings. A LMM is a matching that assigns all the people a partner that
lies at the median of their ordered sets.

The surprising result due to Chen is that not only do GMMs and LMMs always
exist, but there is always at least one GMM and LMM that are identical. Therefore,
if one accepts these local and global measures of fairness as valid, both measures can
be satisfied by one stable matching!

Centennial Problem 1962. Proposed by Paul Kehle, Hobart and William Smith
Colleges.

So what’s the problem? The problem is that in some cases, in addition to a
coinciding GMM and LMM solution, other stable matchings are arguably fairer. How
can we characterize stable-matching problems according to whether the GMM/LMM
matching is the fairest of them all, and what other measure of fairness should we use
to select a matching when the GMM/LMM matching leaves something to be desired?

Consider the set of stable matchings in Figure 2. Which one is fairest, and why?
How does your measure fairness connect with the GMM and LMM measures?
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1966

Class number one problem
The class number one problem is closely related to the theory of binary quadratic

forms. A binary quadratic form is a function f(x, y) = ax2 + bxy + cy2, where a, b, c

http://www.econ.ucsb.edu/~tedb/Courses/Ec100C/galeshapley.pdf
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Fig. 2. This stable-matching instance for n = 8 has 16 stable matchings. They form a partially
ordered set that reveals a hierarchy of matchings. A line between two matchings means that the
matching with the larger Roman numeral is one in which each of the men has a partner he prefers
at least as much as the partner he has in the matching with the smaller Roman numeral. This
ordering is therefore transitive; since XVI is better than XV and because XV is better than XI,
therefore XVI is better than XI even though no direct line is drawn between these two matchings.
Note however that XV is not better than V, even though the average preference of the men in XV,
1.875, is much lower than the average in V, 2.625 (examine A’s and G’s preferences). This “better
than” ordering is reversed for the women’s perspective: lines between matchings indicate that each
of the women has at least as good or better a partner in the matching denoted by the smaller of the
two Roman numbers.

are integers. Despite their simple appearances, quadratic forms have a rich structure.
They have been studied since ancient times, but their modern interest relates to the
question of when we expect to find primes of a specific form. Gauss developed much of
the theory of quadratic forms in his landmark book Disquisitiones Arithmeticae. We
recall a few of his definitions. We set D = b2−4ac, and call D the discriminant of the
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quadratic form f(x, y). We say an integer m is represented by f if there exist coprime
integers r, s such that m = ar2 + brs + cs2. Gauss noticed that for a fixed D, many
quadratic forms behave similarly: for example, they represent the same set of integers.
Gauss developed a notion of equivalent quadratic forms and sorted quadratic forms
into equivalence classes. We denote the number of equivalence classes by h(D), and
call h(D) the class number of D. Gauss saw that few discriminants had one equiva-
lence class of quadratic forms, and conjectured he had found all D for which h(D) = 1.
The quadratic form version of the class number one problem says that h(D) = 1 if
and only if D ∈ {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}. In
1966, Alan Baker and Harold Stark submitted papers that proved Gauss’ class number
one conjecture. Their methods were very different, with Baker utilizing the theory of
logarithmic forms and Stark studying L-functions and certain Diophantine equations.

Centennial Problem 1966. Proposed by Kyle Pratt, Bringham Young University.

Let D = −28, so that h(D) = 1. Show that x2 + 7y2 represents infinitely many
primes.
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1970

Hilbert’s Tenth Problem
One of the most fundamental questions in mathematics is, not surprisingly, also

one of the oldest: Given an equation, is there a solution? This is a very general
question, and as such there are many issues with our formulation. For example, what
kind of equations are we considering? What do we count as a solution? If we’re given
x2 + 1 = 0 then the two solutions are i =

√
−1 and −i; however, neither of these

are real numbers and thus some people might object to these being considered roots.
Alternatively, consider r2−π = 0. The roots here are r =

√
π and−√

π; unfortunately,
π is a transcendental number and we cannot construct it (or its square-root) using just
a straight edge and compass. Thus the ancient Greek mathematicians would object
to an assertion that this has a solution as it is non-constructible (given the tools they
allowed).

The two examples above are not random, unimportant problems. Both played
a key role in the development of mathematics. The first led to the introduction of
complex numbers and eventually the Fundamental Theorem of Algebra, which states
that any polynomial of degree n with complex coefficients has exactly n complex
roots (a complex number z can be written as z = x + iy, with x and y real). What
this means is that once we introduce a new symbol to solve x2 + 1 = 0, we can not
only solve all quadratic equations, but also all cubic, quartic and any finite degree
polynomial – not a bad return for the introduction of just one number! Our second
example is one of the three famous constructions that the Greeks desired but could
not find. This problem is equivalent to squaring the circle: can you construct (using

http://www.ams.org/journals/mcom/1969-23-105/S0025-5718-1969-0262204-1/S0025-5718-1969-0262204-1.pdf
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straight edge and compass) a square whose area equals that of a circle of radius 1?
(The other two problems are doubling a cube and trisecting an arbitrary angle, which
are also both impossible.)

While our two above problems don’t have ‘standard’ solutions, they are at least
solvable. This is not always the case. Consider for example ex = 0. Even if we allow x
to be complex there are no solutions, so it is possible to write down equations without
roots. Interestingly, ex = a can be solved for any complex a other than zero; perhaps
the most famous choice of a is -1, which leads to the famous and beautiful formula
eπi = −1.

When given an equation, there are three natural questions to ask: Is there a solu-
tion? How many solutions are there? Can we find them? After our discussion above,
we see that we must restrict the space of equations we study in order to make progress.
A popular and important class of problems are Diophantine equations, which ask for
solutions in rational numbers to the equation p(x1, . . . , xn) = 0, where p is a polyno-
mial with rational coefficients. These equations have intrigued mathematicians from
the dawn of the subject to the present day; two simple examples are the Pythagorean
Theorem and Fermat’s Last Theorem (if n > 2 is an integer then the only integer
solutions to xn + yn = zn have xyz = 0).

In 1900 the Second International Congress on mathematics was held in Paris.
David Hilbert, one of the greatest of his or any generation, gave an influential address
where he listed some of the most important problems in mathematics. This list has
motivated and shaped the course of mathematical research ever since. To this day,
one of the highest honors someone can receive is joining the Hilbert Class, the elite
list of people who have solved one of these 23 problems.

Hilbert’s tenth problem dealt with our questions above: Given a Diophantine
equation with any number of unknown quantities and with rational integral numerical
coefficients: To devise a process according to which it can be determined in a finite
number of operations whether the equation is solvable in rational integers. Unfortu-
nately, it turns out that even this is asking too much; in 1970 Matiyasevich completed
a chain of ideas of many mathematicians (including Julia Robinson, Martin Davis,
and Hilary Putnam), proving that Hilbert’s tenth problem is unsolvable.

Centennial Problem 1970. Proposed by Steven J. Miller, Williams College.

The main problem for this year is doing double duty, serving as the problem for
1994 as well! However, as the solution involves not just the Fibonacci numbers but
also Zeckendorf’s decomposition theorem, this provides a nice opportunity to talk
about some of my favorite subjects. Zeckendorf’s theorem states that if we write the
Fibonaccis as 1, 2, 3, 5, 8, . . . then every positive integer can be written uniquely
as a sum of non-adjacent Fibonacci numbers. The standard proof is to use a greedy
algorithm: given an m, remove the largest Fibonacci number (say Fn) at most m. If
the difference is non-zero remove the largest Fibonacci possible; if that was Fn−1 then
we could have removed Fn+1, a contradiction.

Here is an outline for another approach. I call the following the cookie problem,
though it’s more commonly referred to as the stars and bars problems: How many
ways are there to divide C identical cookies among P people, where all that matters
is how many cookies someone gets, not which cookies. This is equivalent to solving
x1 + · · ·+ xP = C with each xi a non-negative integer. In [2] this is used to not only
prove Zeckendorf’s theorem, but also to show that if we look at all integers between
the nth and (n + 1)st Fibonacci number that, as n → ∞, the number of summands
in the Zeckendorf decomposition becomes normally distributed! Can you figure out
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how to prove Zeckendorf’s theorem from knowing that the number of solutions to

this Diophantine equation is
(

C+P−1
P−1

)

? Can you find an elementary proof that the

claimed number of solutions is correct?
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1974

Rubik’s cube
In 1974, Ernö Rubik invented the “Rubik’s cube,” a mechanical puzzle that

quickly became popular around the world. It is easy to scramble a cube with just
a few turns; figuring out how to restore the six faces takes much more work. The
first World Championships took place in 1982; the winner Minh Thai, of the USA,
won with a best time of 22.95 seconds. The Rubik’s cube has seen a revival in the
past decade, and the founding of the World Cube Association (WCA) in 2005 has
greatly increased the prevalence of cube competitions. At the time of writing the
current world record was a single solve of 5.55 seconds, held by Mats Valk of the
Netherlands. Feliks Zemdegs, of Australia, holds the record for the best average of
five solves, with a time of 7.53 seconds. Aside from the thrill that comes with speed
and competitions, the Rubik’s cube is an interesting mathematical object. The cube
contains over 43 quintillion (43 · 1018) possible states, yet every state can be solved in
20 moves or fewer. This was shown after many years of work in 2010, requiring lots
of computing power and mathematics. The Rubik’s Cube is a concrete example of a
mathematical object called a “group.” The elements of the group are sequences of
moves, and we can “multiply” two elements together by doing one sequence of move
after the other. It is possible to solve an entire cube using only group theory; the
notion of a commutator (moves of the form X · Y ·X−1 · Y −1) is especially powerful.

Centennial Problem 1974. Proposed by Alan Chang, Princeton University.

(a) Suppose you start with a solved Rubik’s cube. Prove that every (finite)
sequence of turns on the cube, if repeated enough times, will get you back to the
solved state. (b) Observe that each of the three dimensions of the Rubik’s cube has
two “cuts” (in order to produce three layers). We’ll say that a Rubik’s cube “has
cuts at 1/3 and 2/3.” If you wanted to turn a face of the cube, you must turn along
one of these cuts. Similarly, a 4× 4× 4 cube has cuts at 1/4, 2/4, and 3/4. Suppose
instead that we have a cube which has a cut at α for every α ∈ [0, 1]. (Clearly,
there is no way to make this as a mechanical puzzle!) Now, is it true that any finite
sequence of moves, if repeated enough times, will get you back to a solved state?
Acknowledgements: This problem would not have been possible without the help of the
following: (1) Steven J. Miller suggested looking at an infinite variation of (a). (2) A
dinner discussion with a large group of SMALL REU students at Williams College,
Summer ’13, generated lots of ideas. (3) Scott Sicong Zhang helped simplify the proof
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Fig. 3. The Mandelbrot set. The top picture is from 1978, the bottom a more modern rendering.

of (b).
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1978

Mandelbrot Set
While nowadays the Mandelbrot set is one of the most recognizable images in

mathematics, the first image of it didn’t appear until the work of Robert W. Brooks
and Peter Matelski in 1978; compare the resolution and detail available then and now
in Figure 3!

The Mandelbrot set is an excellent example of a fractal, which is an object pos-
sessing a lot of self-similarities as we zoom in on various parts of it. It is constructed
as follows. For each complex number c we form the sequence of points {zn;c}, where
z0;c = c and zn+1;c = z2n;c + c. The simplest pictures are obtained by coloring a point
c black if the sequence is bounded and blue otherwise; for finer detail, we can color
points whose sequences are unbounded differently based on how many iterations are
needed to exceed a given amount. There are many online videos of incredible zoom-ins
of this set; see for example [4].

The Fractal Geometry course webpage from Yale University, available online at [1],
is an outstanding resource with detailed articles, illustrations of fractals, discussions of
their roles and applications, and links to several TED lectures; the reader is strongly
encouraged to visit and spend a few hours browsing.

Centennial Problem 1978. Proposed by Steven J. Miller, Williams College.

A strong contender for this year’s topic was the video game Space Invaders [5].
Created by Tomohiro Nishikado and released in 1978, this mega-blockbuster game
revolutionized the industry. Interestingly, though, one of the defining features of the
game is due to hardware limitations of the time. Specifically, in the game alien ships
are descending on the Earth. As more of them are destroyed, the remaining ships
start traveling faster and faster until the last ship or two move at incredible speeds.
This feature was due to difficulties in rendering the ships; the fewer ships there were
that needed to be drawn, the faster the computer could display them! Nishikado
decided that he liked this, and incorporated it into the game.

The relation between Space Invaders and the Mandelbrot set is the need to render

http://www.rubiks.com/
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images quickly. With the reach of modern video gaming and computer animated
movies, this is a multi-billion dollar a year issue. Instead of the Mandelbrot set one
could look at other polynomial iterations instead of fc(z) = z2 + c. As we need to
evaluate many polynomials time and time again, it becomes imperative to find as fast
of a way of doing this as possible. If we have a polynomial f(x) = anx

n+· · ·+a0, then
brute force requires n(n+1)/2 multiplications and n additions. To see this, note that
it costs us k multiplications to compute akx

k, and 1+· · ·+n = n(n+1)/2. It is possible
to evaluate this polynomial in significantly fewer multiplications (multiplication is far
more expensive than addition; compare how many digit operations are needed to
multiply two n digit numbers versus adding them). By cleverly grouping terms, what
is the fewest number of multiplications needed to evaluate f(x)? Amazingly, we can
replace the order n2, which we get by brute force evaluation, with a bound which is
order n. (Spoiler alert: the answer is Horner’s algorithm, which you may have seen
years ago in grade school.) For high degree polynomials this is an incredible savings;
for small degree it still adds up when we have to compute as often as we do in these
detailed images. For a related problem, see the entry on the Fast Fourier Transform,
and the discussion of the Strassen algorithm for fast matrix multiplication, from the
1965 entry.
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1982

Two Envelope Problem
In Marcus du Sautoy’s book The Music of The Primes, the early 20th century

mathematician G. H. Hardy is quoted as once declaring, “Probability is not a notion
of pure mathematics but of philosophy or physics.... 317 is a prime whether we like
it or not. Probability theory, on the other hand, is the ultimate slippery subject.”
Although Hardy’s words are arguably biased towards a pure mathematical viewpoint,
they are forever sealed in the melodic variety of probability problems that were born
in games of chance and mathematical attempts to understand, predict, and strategize
throughout the course of modern history. From the modeling of dynamic markets in
economics to its far-reaching applications in quantum physics, probability serves as a
tool to approximate the pure mathematical (often called Platonist’s) view of reality.

Sometimes, paradoxical problems emerge in these attempts. The Two-Envelope
Problem is one such conundrum. A popular styled version of the problem is as follows:

A player can choose between two closed identically constructed en-
velopes with one marked A and the other marked B. Both envelopes
contain money. One envelope contains X dollars and the other enve-
lope contains 2X dollars and there is no way of telling by any physi-
cal perceptual measure which envelope contains the higher value. The
player initially chooses envelope A without opening it. According to
the rules of the game, as long as the player does not open an enve-
lope, the player can switch envelopes indefinitely until a final choice

http://classes.yale.edu/Fractals/
http://classes.yale.edu/Fractals/MandelSet/welcome.html
http://vimeo.com/12185093
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is made. Which envelope should the player finally decide to open in
an attempt to obtain the higher value?

The contradictory nature of the problem comes from calculating the expected
value of switching the envelopes. For example, envelope B has a probability of 1/2 or
50% to contain either value. Therefore, according to probability theory the expected
value contained in B is 2X/2+X/2 = 3X/2. Given this value and considering that it
is not known which envelope contains X dollars, it could be argued that the expected
value is higher for switching the envelopes indefinitely, and the player could switch
the envelopes ad infinitum without ever deciding on either to open. However, it can
also be argued that since the expected value 3X/2 is also the average value for the
two envelopes and 3X/2 < 2X , there is no reason for the player to switch.

Historically, an early inspiration for the problem was proposed by the Belgian
mathematician Kraitchek in his 1953 book, Mathematical Recreations. Kraitchek cast
the original problem in the form of a wager between two equally wealthy men trying to
guess the cost of each other’s necktie that they received from their respective wives as
presents. This particular problem is known as the Necktie Paradox. The celebrated
Scientific American science and recreational mathematics writer, Martin Gardner,
proposed another version of the Necktie Paradox in his 1982 book, Aha! Gotcha. In
Gardner’s version the two men wager over wallets rather than neckties. There has
been a flood of searchable proposed solutions for The Two-Envelope Problem in the
years since the publication. It is conundrums of this nature that give amateur and
professional enthusiasts alike all the more reason to explore Hardy’s “ultimate slippery
subject.”

Centennial Problem 1982. Proposed by Avery T. Carr, Emporia State University,
and Steven J. Miller, Williams College.

The following problem was proposed by Olle Häggström in the March 2013 edi-
tion of Notices ; be warned, though, as it is an open problem! The following problem
is a paradox similar to the Two-Envelope Problem known as Newcomb’s Paradox.

An incredibly intelligent donor, perhaps from outer space, has pre-
pared two boxes for you: a big one and a small one. The small one
(which might as well be transparent) contains $1,000. The big one
contains either $1,000,000 or nothing. You have a choice between
accepting both boxes or just the big box. It seems obvious that you
should accept both boxes (because that gives you an extra $1,000 ir-
respective of the content of the big box), but here’s the catch: The
donor has tried to predict whether you will pick one box or two boxes.
If the prediction is that you pick just the big box, then it contains
$1,000,000, whereas if the prediction is that you pick both boxes, then
the big box is empty. The donor has exposed a large number of people
before you to the same experiment and predicted correctly 90 percent
of the time, regardless of whether subjects chose one box or two. What
should you do?
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1986

Sudokus and Look and Say
Long ago movie theaters would have double features, where people could see two

films for the price of one. Opened in 1936, the Astor Theatre in Melbourne, Australia
is one of the few places where people can still catch a double feature. In honor of its
50th anniversary, we present a mathematical double feature: two ‘recreational’ math
topics for the price of one!

It’s hard today to find someone who hasn’t heard of Sudokus. Their rise to
popularity began in 1986 with the puzzle company Nikoli in Japan, and have become
so ubiquitous that they now share space with crossword puzzles in newspapers and
airline magazines. There is a lot of terrific mathematics about them. The first natural
question to ask is how many distinct puzzles there are. For example, if we switch all 1s
and 9s we get a puzzle that looks different, but isn’t. There are other transformations
we can do, such as rotating the puzzle by 90 degrees, or flipping about the middle row,
or interchanging the first and third row, .... Up to symmetries, there are 5,472,730,538
essentially different puzzles. Another natural question is what is the minimal number
of clues which must be given in order to uniquely determine how a Sudoku is filled.
This was recently proved to be 17 by Gary McGuire, Bastian Tugemann and Gilles
Civario. For more information, see [4, 5, 7, 9].

For our second feature, consider the famous ‘See and Say’ (or ‘Look and Say’) se-
quence of Conway. The first few terms are 1, 11, 21, 1211, 111221, 312211, 13112221,
1113213211. The pattern is not immediately obvious, and it is because we are used to
looking for patterns by adding, multiplying, dividing, reversing, or some other mathe-
matical process. This famous sequence is actually created by the process in its name:
look-and-say. The first number is “one 1”, so the second number is 11. The second
number is “two 1’s”, so the third number is 21, and so on. This astounding sequence
was first introduced by John Conway in 1986. Conway and his colleagues proved a
number of remarkable facts about this simple sequence. The following is from the
abstract of a talk on the subject given by Alex Kontorovich at Columbia on March
23, 2004: He found that the sequence decomposed into certain recurring strings. Cat-
egorizing these 92 strings and labeling them by the atoms of the periodic table (from
Hydrogen to Uranium), Conway was able to prove that the asymptotic length of the
sequence grows exponentially, where the growth factor (now known as Conway’s Con-
stant) is found by computing the largest eigenvalue of a 92 × 92 transition matrix.
Even more remarkable is the Cosmological Theorem, which states that regardless of
the starting string, every Look and Say sequence will eventually decay into a com-
pound of these 92 atoms, in a bounded number of steps. Conway writes that, although
two independent proofs of the Cosmological Theorem were verified, they were lost in
writing! It wasn’t until a decade later that Doron Zeilberger’s paper (coauthored with
his computer, Shalosh B. Ekhad) gave a tangible proof of the theorem. We will discuss
this weird and wonderful chemistry, and some philosophical consequences. The only
prerequisite is basic linear algebra. We urge the reader to visit the links and read the
references [1, 2, 3, 8] and learn more about these!

There are many other interesting facts that are not obvious just from viewing
it. For example, no number in the sequence contains a digit other than 1, 2, or
3. Many variations of such sequences have since been analyzed, from using different

http://en.wikipedia.org/wiki/Two_envelopes_problem
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starting numbers, to considering them in binary, to counting numbers of digits instead
of numbers of digits in blocks. Many of these variations have similarly interesting
properties, and as such have been studied on their own.

Centennial Problem 1986. Proposed by Steven J. Miller and Samuel Tripp,
Williams College.

From the abstract of [5]: The Sudoku minimum number of clues problem is the
following question: what is the smallest number of clues that a Sudoku puzzle can have?
For several years it had been conjectured that the answer is 17. We have performed
an exhaustive computer search for 16-clue Sudoku puzzles, and did not find any, thus
proving that the answer is indeed 17. In this article we describe our method and the
actual search. As a part of this project we developed a novel way for enumerating
hitting sets. The hitting set problem is computationally hard; it is one of Karp’s 21
classic NP-complete problems. A standard backtracking algorithm for finding hitting
sets would not be fast enough to search for a 16-clue Sudoku puzzle exhaustively, even
at today’s supercomputer speeds. To make an exhaustive search possible, we designed
an algorithm that allowed us to efficiently enumerate hitting sets of a suitable size.
One can consider larger and larger Sudokus. The next largest is the 16× 16, though
in general we can look at n2×n2 grids. How does the minimum number of clues grow
with n? Can you find any lower bounds? Any upper bounds?

Let’s consider variants of the Look and Say sequence. For example, what if instead
of saying two three for 33 we say three two, so we are saying things backwards? Note
that there’s no difference for 1, 22, or 333 but there is a difference for 33. If we again
start with 1 the first few terms are now 1, 11, 12, 1121, 122111, 112213, 12221131;
interestingly each term is the reverse of the corresponding term in the original sequence
(1, 11, 21, 1211, 111221, 312211, 13112221). Does this pattern hold forever? What
if instead whenever we have just one of a number we just write that number? In
this case if we start with 1 we always have 1, but if we have 11 it would go to 21,
and then all subsequent terms are also 21. If we start with 112 then the next term
is 212, followed by 212, which then stabilizes. Prove or disprove: if we start with
a finite string composed of 1s, 2s and 3s, does the sequence eventually stabilize (so
that all terms from some point onward are the same)? For another challenge, take
the classic Look and Say sequence with a seed value of 1, which starts as 1, 11, 21,
1211, 111221, . . . . Consider 3-digit substrings of terms in this sequence. Prove that
333 will never be found as a 3-digit substring of any term, and then find 3 other such
3-digit substrings that never appear. There are of course many other problems you
could study; see for example [6].
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1990

The Sleeping Beauty Problem
One of the most enjoyable parts of writing problems is seeing the conversations

they generate. In recent times one of the most famous is the Monty Hall Problem,
which is given in 1990. There was vigorous debate in the mathematics community
and beyond as to what was the right answer. The following fun problem continues
this tradition and is also from 1990, though not as widely known. A variant first
appeared in Zuboff’s article in Inquiry: An Interdisciplinary Journal of Philosophy;
on a personal note, as a father with a young daughter who loves the Disney princesses,
it’s a nice way to use them to highlight math.

Centennial Problem 1990. Proposed by Adam Elga, Princeton University.

The Sleeping Beauty Problem. Some researchers are going to put you to sleep.
During the two days that your sleep will last, they will briefly wake you up either
once or twice, depending on the toss of a fair coin (Heads: once; Tails: twice). After
each waking, they will put you to back to sleep with a drug that makes you forget
that waking. When you are first awakened, to what degree ought you believe that the
outcome of the coin toss is Heads?
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1994

AIM
In 1994 John Fry funded the creation of AIM, the American Institute of Mathe-

matics. Since 2002 it has been one of now eight institutions that are part of the Na-
tional Science Foundation’s Mathematical Sciences Institute Program (the others are
the Institute for Advanced Study (IAS) in Princeton, the Institute for Computational
and Experimental Research in Mathematics (ICERM) in Providence, the Institute for
Mathematics and its Applications (IMA) in Minneapolis, the Institute for Pure and
Applied Mathematics (IPAM) in LA, the Mathematical Biosciences Institute (MBI)
in Columbus, Mathematical Sciences Research Institute (MSRI) at Berkeley, and the
Statistical and Applied Mathematical Sciences Institute (SAMSI) at Research Trian-
gle Park in North Carolina). Since their founding they have brought together many
scientists and fostered long-term collaborations, which have resulted in solutions to
many important problems. They have also run many programs on mathematical out-
reach, broadening participation and helping excite the next generation. The following
text is from AIM’s homepage; for more information, including some stories on recent
spectacular successes, see [1, 2, 3].

The mission of AIM is to advance mathematical knowledge through
collaboration, to broaden participation in the mathematical endeavor,
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and to increase the awareness of the contributions of the mathematical
sciences to society.

Since 2002 AIM has been part of the National Science Founda-
tion (NSF) Mathematical Sciences Institutes program. AIM receives
funding from NSF to hold weeklong focused workshops in all areas of
the mathematical sciences. In 2007 a program called SQuaREs which
brings small research groups to AIM was developed. Each year twenty
workshops are hosted at the institute and over thirty small research
groups.

AIM strives to broaden participation in the mathematical sciences
at every level, from supporting the research of professional mathe-
maticians working on the most important mathematical problems of
our day to encouraging young students to get excited about math and
become the STEM professionals of the future.

AIM created the Math Teachers’ Circle Network to encourage
problem solving in middle schools, and now there are nearly 60 ac-
tive Math Teachers’ Circles nationwide. Recently, AIM announced
a new partnership with the Julia Robinson Mathematics Festivals.
At the local level, AIM provides support and leadership to numerous
students, teachers, and organizations throughout the South Bay and
Silicon Valley communities.

Centennial Problem 1998. Proposed by Steven J. Miller, Williams College.

There are so many good stories arising from work at AIM that it’s hard to choose;
I chose the following as it connects with an earlier problem from this set of 100th
anniversary problems (Hilbert’s tenth problem, see 1970), as well as one from the
previous set (the founding of Sage, see 2005). For more details, see the article “A
Trillion Triangles” [4].

The problem is deceptively simple to state: What positive integers are the areas
of a right triangle with rational sides? In other words, we want to solve the system
of equations a2 + b2 = c2 and 1

2ab = n, where a, b and c are rational numbers and
n is an integer. If you prefer just one equation we can oblige by using the famous
trick of subtracting and squaring: (a2 + b2 − c2)2 + (12ab− n)2 = 0. Such n are called
congruent numbers, and this is often called the congruent number problem.

Given a right triangle we can always find the corresponding congruent number
(if the resulting number is rational and not an integer, we just rescale the sides).
For example, the famous 3-4-5 triangle gives the congruent number 6, while 5-12-13
gives us 30. Are there infinitely many congruent numbers? If so which numbers are
congruent numbers? As it turns out to be quite challenging to find such numbers,
we can lower our goals and try to predict roughly how many there are. For example,
find a function of x that is an excellent approximation to the number of congruent
numbers at most x as x → ∞. Read the article [4] and the links on the right (which
describe the computers and the theory of congruent numbers). Can you do better?
The research groups there were able to resolve the first trillion cases. One of the
greatest difficulties in this was the enormous size of the computations. From the
article: The advance was made possible by a clever technique for multiplying large
numbers. The numbers involved are so enormous that if their digits were written out
by hand they would stretch to the moon and back. The biggest challenge was that
these numbers could not even fit into the main memory of the available computers,
so the researchers had to make extensive use of the computers’ hard drives. One of
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the teams used the computer Sage at the University of Washington (see the problem
from 2005).

Can you replicate their work? How many cases can you resolve? Can you extend
and get the up to a quadrillion? The last question is particularly important as it
would allow us to further check the conjectured growth formula for the number of
congruent numbers, which does a great job in the range investigated to date.
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1998

The Kepler Conjecture
The Kepler problem concerns the densest packing of equal spheres in space.

In one or two dimensions the problem is easy; for two dimensions the best pack-
ing is to tile the plane with hexagons, and inscribe the circles at the centers. In
three dimensions, however, the problem becomes enormously more difficult. Af-
ter a little experimentation one quickly comes to believe that the best solution is
to start with a hexagonal packing, with the center of the spheres at the centers
of the hexagons. This gives us our first layer. The next layer is another such
packing, but shifted so the the new spheres go into the valleys of the first layer.
Continuing this process, one gets a packing whose density is π

3
√
2
≈ 74.04%. Ke-

pler conjectured in 1611 in “On the six-cornered snowflake” (available online at
http://www.thelatinlibrary.com/kepler/strena.html) that this packing is opti-
mal. The problem was brought to his attention by Thomas Harriot, who had been
asked by Sir Walter Raleigh what was the optimal way to stack cannonballs on the
ship. Not surprisingly this is known as the cannonball packing (and close approxima-
tions can be seen in various fruit displays at stores). The problem was posed earlier
than Fermat’s Last Theorem and fell shortly afterwards, making it an open, active
problem for a longer period of time. A landmark solution to the problem was put
forth in a series of six preprints by Thomas C. Hales and Samuel P. Ferguson in the
Mathematics arXiv in 1998, where they proved this (plus uncountably many other
packings of equal density) give the best density. After a long peer review process, re-
vised versions of the six papers were published in 2006 in Discrete and Computational
Geometry. Problems of packing small spheres in containers are already very difficult.

Centennial Problem 1998. Proposed by Jeffrey Lagarias, University of Michigan.

Determine the minimal side of a cube R(n) sufficient to pack completely inside
n unit radius spheres, for 1 ≤ n ≤ 20. If you cannot get exact answers, determine
upper and lower bounds.
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2002

PRIMES in P
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Given an integer larger than 1, how quickly can you tell whether it is prime or
composite? Everyone knows a method, namely divide the number by 2, 3, . . . . If you
discover a factor, the number is composite, and if you reach the square root of the
candidate without finding a factor, it’s prime. Some numbers, like the set of even
numbers, get recognized instantly. But the method takes about

√
n steps to recognize

that n is prime, when it is so. This is impractical for n > 1030, say.

The question is if there is a “polynomial-time” procedure to distinguish between
primes and composites, where it is not necessary to find a factor of a composite, only
merely to recognize that it is composite. A number n is presented to us by its digits
(usually decimal or binary) and the length of this representation for n is proportional
to logn. So polynomial time means that there should be constants A,B so that the
the total number of elementary steps performed by the algorithm on n is at most
A(log n)B.

Using Fermat’s little theorem to the base 2 (that is, when p is an odd prime,
2p−1 ≡ 1 mod p) suggests itself, since verifying the congruence can be accomplished
in polynomial time (see the entry from 2010 on Carmichael numbers). However, some
composites also satisfy this congruence. By using certain elaborations of Fermat’s
little theorem (like using that the only square roots of 1 mod p for an odd prime p are
±1 and that this is untrue modn if n is divisible by two different odd primes), one
can construct a random procedure that expects to recognize composites (and prove
that they are composite) in polynomial time. (Examples are the Solovay–Strassen
test or the Miller–Rabin test.) If such a random algorithm is tried out on a prime
input, it grinds away looking for a proof that it is composite, and never finds such a
proof. You can conclude that either the number is prime, or it is composite and you
have been very unlucky in finding a proof.

On the other hand, we also have the Adleman–Huang test, a random procedure
that expects to find a proof of primality for a prime input in polynomial time. This
is much more difficult, using very deep mathematics.

We would like to “de-randomize” the problem. That is, we would like a determin-
istic polynomial-time algorithm that can distinguish between primes and composites.
Over the years there were some close calls, but it wasn’t until an electrifying announce-
ment from India in 2002 that we had an answer. Manindra Agrawal and his two
undergraduate honors students, Neeraj Kayal and Nitin Saxena, gave a fairly simple
deterministic polynomial-time algorithm that distinguishes primes from composites.
It involves a generalization of Fermat’s little theorem to the ring of polynomials over
a prime finite field modulo an irreducible polynomial. The algorithm is accessible
and the reader is encouraged to check it out in the original paper or in one of the
secondary references.

Centennial Problem 2002. Proposed by Carl Pomerance, Dartmouth College.

Agrawal, Kayal, and Saxena were successful in de-randomizing the prime recog-
nition problem. Here is another simple problem where there is a polynomial-time
random algorithm, but we don’t know yet if there is a polynomial-time determinis-
tic algorithm. Given an odd prime p, find an integer a such that a is a quadratic
non-residue for p; that is, the congruence x2 ≡ a mod p has no integer solution x.
We seek a quadratic non-residue, and they are not at all scarce! In fact, half of the
non-zero residues modp fit the bill. In addition, a candidate can be quickly checked
(in polynomial time) via either Euler’s criterion or the law of reciprocity for Jacobi
symbols. Thus, the algorithm of randomly selecting nonzero residues a until you are
successful expects to succeed in 2 tries! A possible deterministic algorithm sequen-
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tially tries small numbers for a until a good one is found. This works well for a large
proportion of the primes. For example, one of −1, 2, 3, 5 is a quadratic non-residue
for an odd prime p unless p ≡ 1 or 49 mod 120. Conjecturally the procedure of trying
small values of a till success works in polynomial time, but this is only known under
the Extended Riemann Hypothesis. Another possible strategy: Start with −1 and
sequentially take modular square roots until a non-square is found. Fine, but we know
no method to take modular square roots in deterministic polynomial time, unless one
pre-supposes an oracle that give you a quadratic non-residue! Is there some other
de-randomization of this problem that can be proved to run in polynomial time? No
one knows.
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2006

The Perfect Graph Theorem
Two of the most basic parameters in graph theory are the chromatic number and

clique number of a graph G, which we denote respectively by χ(G) and ω(G). The
chromatic number is the smallest integer c such that if each vertex of G is colored one
of c distinct colors then no two vertices joined by an edge are colored the same, while
the clique number is the maximum number of vertices of G which are all mutually
connected to each other by edges. While χ(G) ≥ ω(G) holds trivially, both parameters
are computationally intractable (NP-hard). In 1961 Berge proposed a deep conjecture
asserting that χ(G) = ω(G) for all graphs G which have no induced subgraph which
is either an odd cycle of length ≥ 5 or its complement. This appealing conjecture
generalizes numerous classical theorems in graph theory such as König’s Theorem
and Dilworth’s Theorem, and quickly became the subject of a large body of work.

We call a graph perfect if every induced subgraph has chromatic number equal to
its clique number, and we call it Berge if it has no induced subgraph which is either
an odd cycle of length ≥ 5 or its complement. With this terminology we can state
Berge’s conjecture as follows: A graph is perfect if and only if it is Berge. Since Berge
graphs are trivially closed under complementation, Berge’s conjecture implies that
perfect graphs are also closed under complementation. This weaker conjecture was
proved by Lovász in 1972 using an elegant polyhedral argument. His inspiring proof
spurred significant further developments in polyhedral combinatorics.

The full proof of Berge’s conjecture, now called the Perfect Graph Theorem, was
achieved in 2006 by Chudnovsky, Robertson, Seymour, and Thomas. In fact, these
authors reach far beyond the original scope of the problem to solve it. Their proof
gives a decomposition theorem for Berge graphs. That is, they prove that every Berge
graph is either one of a basic class (bipartite graphs, line graphs of bipartite graphs,
and the complements of these classes) or it can be decomposed into smaller Berge
graphs. This remarkable result has already spurred structural approaches to other
problems.
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Centennial Problem 2006. Proposed by Matt DeVos, Simon Fraser University.

Perfect graphs are a pleasing natural family of graphs G for which χ(G) = ω(G).
However, in many cases we are interested in graphs which are not perfect and we might
be willing to accept a weaker bound on χ(G). Call a class G of graphs χ-bounded if
there exists a fixed function f so that every graph G ∈ G satisfies χ(G) ≤ f(ω(G)).
Thanks to the Perfect Graph Theorem, we know that the class of Berge graphs is χ-
bounded with the identity function for f . An unsolved conjecture of Gyárfás asserts
that the class of graphs with no induced subgraph which is an odd cycle of length ≥ 5
is also χ-bounded. Explore this conjecture, and examine what happens if there are
no induced subgraphs which are an odd cycle of length at most 4.
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2010

Carmichael Numbers
E-commerce as we know it would be impossible without the ability to securely

transmit information. As many of these schemes involve prime numbers, primality
tests (methods to determine if a number is prime) are extremely important and have
been the center of much research over the years. One popular method involves Fer-
mat’s little theorem, which asserts that for each prime p and every integer a relatively
prime to p, we have ap−1 ≡ 1 mod p. It is very easy to check this congruence de-
spite the presence of a potentially huge power. The idea is if one has au mod p and
av mod p, then in one simple step one can obtain au+v mod p, using arithmetic with
integers at most p2. So, one builds up to the high exponent p − 1 by an “addition
ladder”, where each term after the first (which is 1), is the sum of two prior terms. If
one actually does this calculation for some a and p (say a = 2 and p = 91), one may
find that ap−1 6≡ 1 mod p, and then conclude that p is not prime after all, despite the
misleading notation of using the letter p. Thus we have the strange situation where a
simple calculation can determine that a number, in this case 91, is composite without
finding any factors!

Is this simple test iron clad? No, it is not as 2340 ≡ 1 mod 341, but 341 is
composite. In fact, there are particularly troublesome numbers, the first is 561, which
are composite, yet a560 ≡ 1 mod 561 for every integer a relatively prime to 561. These
are called Carmichael numbers, and it was proved in 1994 by Alford, Granville, and
Pomerance that there are infinitely many of them. A starting point for the proof is the
following if-and-only-if criterion for n to be a Carmichael number: it is composite,
square-free, and for each prime p dividing n we have p − 1 divides n − 1. Thus
we need more powerful methods than Fermat’s little theorem (see for example the
problem from 2002).

Centennial Problem 2010. Proposed by Carl Pomerance, Dartmouth College.

(1) Let b(n) be the number of integers a in [1, n] with an ≡ a mod n. Show
that b(n) = n if and only if n is 1, a prime, or a Carmichael number. Somewhat
harder: show that if n is a non-Carmichael composite, then b(n) ≤ 2

3n. (2) Say n is a

“taxi cab Carmichael number” if n is composite and a(n−1)/2 ≡ ±1 mod n for every
integer a relatively prime to n. (The first example is n = 1729, the famous number
of Hardy’s taxi cab when he was visiting Ramanujan in the hospital. Look up the
story in the reference below!) Show that if n is a taxi cab Carmichael number, then
a(n−1)/2 ≡ 1 mod n for all integers a relatively prime to n; that is, the “−1” in the
definition never occurs.
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