
PI MU EPSILON: PROBLEMS AND SOLUTIONS: FALL 2014

STEVEN J. MILLER (EDITOR)

1. Problems: Fall 2014

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.

#1294: Chirita Marcel, Bucharest, Romania.
Let f be a differentiable function such that, for some a, b satisfying 0 < a < b < 1 we have∫ a

0

f(x)dx =

∫ 1

b

f(x)dx = 0.

Prove that ∣∣∣∣∫ 1

0

f(x)dx

∣∣∣∣ ≤ 1− a+ b

4
sup
x∈(0,1)

|f ′(x)|.

#1295: Proposed by Moti Levy, Rehovot, Israel.
This problem is related to Problem 1889 proposed by Gary Gordon and Peter McGrath

in Mathematics Magazine. For every positive integer k, consider the series

Sk =

(
1 +

1

2
+

1

3
+ · · ·+ 1

k

)
−
(

1

k + 1
+

1

k + 2
+ · · ·+ 1

2k

)
+

(
1

2k + 1
+

1

2k + 2
+ · · ·+ 1

3k

)
−
(

1

3k + 1
+

1

3k + 2
+ · · ·+ 1

4k

)
± · · · .

(a) Show that Hk > Sk > αHk for some α, 0 < α < 1. Hk =
k∑

m=1

1
m

is the harmonic series.
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(b) Prove that limk→∞ (Hk − Sk) = ln π
2
.

(c) Find a closed form of Sk (with finite number of summands).

Check your solution by evaluating S8 =
(

1
16

+
√
2
8

+ 1
4

√√
2 + 2

)
π + 1

8
ln 2.

(d) Show that limk→∞

(
k−1∑
m=1

π
2k sin mπ

k
− ln 2k

π

)
= γ, where γ is the Euler-Mascheroni constant.

#1296: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA 02325
In this problem all variables represent positive integers. (i) Prove that a2 + b2 = ab is

impossible. (ii) If a, b, c satisfy a2 + b2 + c2 = abc, then prove that 27|abc. (iii) If a, b, c, d
satisfy a2 +b2 +c2 +d2 = abcd, then prove that 16|abcd. (iv∗) Prove or disprove: if a, b, c, d, e
satisfy a2 + b2 + c2 + d2 = abcde, then 9|abcde. More generally, what might be true for the
sum of n squares?

1297: Proposed by Ben Klein, Davidson College, Davidson, NC.

Suppose that p(z) is a cubic polynomial over the complex numbers with distinct roots,
a1, a2, a3.

(1) Assuming p′(a1) = p′(a3), express a2 as a function of a1 and a3, and express p′(a2) as
a function of p′(a1).

(2) Assuming p′(a1) 6= p′(a3), express p′(a2) as a function of p′(a1) and p′(a3).

1298: Proposed by Arthur L. Holshouser, Charlotte, NC.

For all positive integers i, let xi = −ai + ai+1 + ai+2, where ai = ai+3. If t, a1, a2, a3 are
given real numbers with a1, a2, a3 distinct and nonzero and x1, x2, x3 are nonzero, show that
there exists a unique real number t of the form t = t−1

t+f(a,b,c)
such that

aixi + ai+1xi+1 + tai+2xi+2

aixi + tai+1xi+1 + ai+2xi+2

=
ai+1(ai+1 + ai+2)xi+1 + ai(ai + ai+2)xi + taiai+1(xi + xi+1)

ai+2(ai+1 + ai+2)xi+2 + ai(ai + ai+1)xi + taiai+2(xi + xi+2)

for i ∈ {1, 2, 3}.

1299: Proposed by Steven J. Miller, Williams College, Williamstown, MA 01267

The final problem is from the 2014 Middlebury - Williams Green Chicken
Contest; as that takes place on November 15th, the problem cannot be posted
until shortly after that. Please check back later.
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2. Solutions

Note: A correct solution to problem #1283 from Mark Evans of Louisville, KY arrived
after the previous issue went to press.

#1287: Proposed by David Rhee, Massachusetts Institute of Technology, Boston, MA.
Amy and Peter are sharing a cake. Amy will cut it into two pieces. Peter then cuts one of

the pieces into two. This is followed by a second cut by Amy and a second cut by Peter, so that
there will be five pieces, of sizes 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4 ≤ a5, with a1 + a2 + a3 + a4 + a5 = 1.
Amy will get the three pieces of sizes a1, a3 and a5, while Peter will get the remaining two
pieces. What is the maximum amount of the cake Amy can get?

Solution by Andy Liu, Robert Barrington Leigh, David Rhee and Yun Hao Fu.
This problem was also solved by Mark Evans of Louisville, KY, who argued similarly.

First we prove that Peter can always get 2
5

of the cake. Suppose Amy cuts the cake into

two pieces of sizes x and 1− x, where 0 ≤ x ≤ 1
2
. There are three cases.

Case 1. 2
5
≤ x ≤ 1

2
.

Peter will cut 1 − x into x and 1 − 2x. Now the three pieces are of sizes 1 − 2x < x = x.
If Amy does not cut either x, neither will Peter. Peter will then be sure of getting x plus
a second piece, and x ≥ 2

5
. If Amy cuts one of x, Peter will cut the other x in the same

proportions. Peter will get two pieces which add up to x ≥ 2
5
.

Case 2. 1
5
≤ x < 2

5
.

Peter will cut x into x − 1
5

and 1
5
. Now the three pieces are of sizes x − 1

5
< 1

5
< 1 − x. If

Amy does not cut 1 − x, Peter will cut this it in halves. The second smallest piece cannot
be less than 1

2
(x− 1

5
), so Peter will get at least 1−x

2
+ 1

2
(x− 1

5
) = 2

5
. Suppose Amy cuts 1− x

into y and 1−x− y, where 0 ≤ y ≤ 1−x
2

. Then Peter will cut 1−x− y into 2
5
− y and 3

5
−x.

Now y+ (2
5
− y) = 2

5
= (x− 1

5
) + (3

5
− x). Thus Peter will get two pieces which add up to 2

5
.

Case 3. 0 ≤ x < 1
5
.

Peter will cut 1− x into 1
5

and 4
5
− x. The situation is exactly the same as in Case 2.

We now prove that Amy can always get 3
5

of the cake. She can start by cutting the cake

into two pieces of sizes 2
5

and 3
5
. There are two cases.

Case 1. Peter cuts 2
5

into x and 2
5
− x, where 0 ≤ x ≤ 1

5
.

Amy will cut 3
5

into x and 3
5
− x. Now the four pieces are of sizes x = x ≤ 2

5
− x < 3

5
− x.

No matter what Peter does, the size of the second largest piece is at most 2
5
−x and the size

of the fourth largest piece is at most x. Hence Peter gets at most (2
5
− x) + x = 2

5
.

Case 2. Peter cuts 3
5

into x and 3
5
− x, where 0 ≤ x ≤ 3

10
.

If 0 ≤ x ≤ 1
5
, Amy will cut 2

5
into x and 2

5
− x, and the situation is exactly the same as in

Case 1. Hence we may assume that 1
5
< x ≤ 3

10
. Amy will cut 3

5
− x into 1

5
and 2

5
− x. Now

the four pieces are of sizes 2
5
− x < 1

5
< x < 2

5
. There are four subcases.

Subcase 2(a). Peter cuts 2
5

into y and 2
5
− y, where 0 ≤ y ≤ 1

5
.

Since y + (2
5
− y) = 2

5
= x+ (2

5
− x), Peter will get two pieces which add up to 2

5
.
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Subcase 2(b). Peter cuts x.
If 1

5
remains the third largest piece, Amy will get at least 2

5
+ 1

5
= 3

5
. If it becomes the second

largest piece, Peter gets at most 1
5

+ 1
5

= 2
5
.

Subcase 2(c). Peter cuts 1
5

into y and 1
5
− y, where 0 ≤ y ≤ 1

10
.

Since 2
5
− x ≥ y, the second smallest piece is at most 2

5
− x. Hence Peter gets at most

(2
5
− x) + x = 2

5
.

Subcase 2(d). Peter cuts 2
5
− x.

Amy will get at least 2
5

+ 1
5

= 3
5
.

Problem 1288: Proposed by Gabriel Prajitura, Mathematics Department SUNY Brockport.
A term ak of a sequence {an} is called a local extreme if either ak−1 ≤ ak ≥ ak+1 or

ak−1 ≤ ak ≥ ak+1. (a) If a sequence has infinitely many local extreme terms prove that the
sequence is convergent if and only if the subsequence of all local extreme terms is convergent.
(b) Show that Part (a) is no longer true if in the definition of a local extreme ≤ and ≥ are
replaced by < and > respectively.
Solution by Eugen J. Ionascu, Department of Mathematics, Columbus State
University, Columbus, GA. This problem was also solved by Christopher York and
Luke Meyer, Texas Academy of Leadership in the Humanities, Lamar Univer-
sity, Beaumont, TX, Luke Bent, Alma College, Alma, Michigan, Armstrong
Problem Solvers, Armstrong State University, Savannah, GA and Moti Levy,
Rehovot, Israel.

(a) It is well known that any subsequence of a convergent sequence is convergent (to the
same limit). If the subsequence of all local extreme terms ank , n1 < n2 < · · · , is convergent,
to L, then let us show that the sequence {an} is convergent to L. Given and ε > 0, there exists
k0 such that for every k ≥ k0 we have ank ∈ [L− ε, L+ ε]. For every n, nk < n < nk+1, {an}
must be either non-increasing or non-decreasing otherwise we have another local extreme
between nk and nk+1 which contradicts the definition of nk. This forces an ∈ [L − ε, L + ε]
for every n > nk0 . Therefore we have limn→∞ an = L.

(b) Because the new definition requires both inequalities be strict, a term ak for which
ak−1 < ak ≤ ak+1, it is not considered a local extreme term. As a result we may have a
subsequence like this which is has a positive oscillation. A concrete counterexample is to
combine the sequence (−1)bn/5c if n 6≡ 2 (mod 5) with the constant sequence 0 if n ≡ 2 (mod
5), i.e.,

1, 1, 0, 1, 1,−1,−1, 0,−1,−1, 1, 1, 0, 1, 1,−1, 1, 0,−1,−1, · · · ,
in which the subsequence of all local extreme terms is convergent to 0 but the sequence itself
is clearly not convergent.

#1289: Proposed by Mike Pinter, Belmont University, Nashville, TN. In honor of the
centennial of Pi Mu Epsilon, solve in base 16

PMEMATH

+ SOCIETY

HUNDRED

(note there are 15 different letters).
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Solution by Jessica Lehr, Elizabethtown College, Elizabethtown, PA 17022. This
problem was also solved by Mark Evans, Louisville, KY (email him at markdjevans@twc.com
for his code to find all solutions), Thu Dinh, Cal Poly Pomona, CA, Yoshinobru
Murayoshi (Okinawa, Japan), Eugen J. Ionascu, Department of Mathemat-
ics, Columbus State University, Columbus, GA, Luke Bent, Alma College,
Alma, Michigan, Sara Burmeister, North Central College, Naperville, Illinois
and Armstrong Problem Solvers, Armstrong State University, Savannah, GA.

It is clear that P + S ≤ 16 because there is no carry from the most significant column.
Additionally, H + Y = D or H + Y = 16 + D. If H + Y = 16 + D then T + T is odd,
otherwise if H + Y ≤ 16 then T + T is even. These are a few logical considerations to help
lead to a solution.

One possible solution to this problem is:

3 5 13 5 11 6 12
+ 9 2 1 10 13 6 4

12 7 15 0 8 13 0
.

Another possible solution would be one in which the value of P and S are switched to
yield:

9 5 13 5 11 6 12
+ 3 2 1 10 13 6 4

12 7 15 0 8 13 0
.

#1290 Proposed by Neculai Stanciu, George Emil Palade School, Buzǎu, Romania and
Titu Zvonaru, Comǎnesti, Romania.

Consider a set of five distinct positive real numbers such that if we take all products of pairs
of these numbers, then only seven distinct numbers are formed. Thus, if the numbers are
0 < x1 < x2 < x3 < x4 < x5, if we look at the set formed from all products xixj, with i 6= j,
then there are only seven distinct numbers. Prove the xi’s form a geometric progression; in
other words, there is an r such that xi+1 = rxi for i ∈ {1, 2, 3, 4}.

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, Angelo State
University, San Angelo, TX 76909 (email contact: charles.diminnie@angelo.edu).
This problem was also solved by Mark Evans, Louisville, KY, Thu Dinh, Cal Poly
Pomona, CA, Murayoshi Yoshinobu, Okinawa, Japan, David Stoner, South
Aiken High School, Henry Ricardo, New York Math Circle, Peter A. Lind-
strom, North Lake College, Irving, TX, Eugen J. Ionascu, Department of
Mathematics, Columbus State University, Columbus, GA, Christopher York
and Luke Meyer, Texas Academy of Leadership in the Humanities, Lamar Uni-
versity, Beaumont, TX, Luke Bent, Alma College, Alma, Michigan, René San-
droni, St. Bonaventure University, St. Bonaventure, NY, Armstrong Problem
Solvers, Armstrong State University, Savannah, GA and Moti Levy, Rehovot,
Israel.

Since there are ten possible outcomes for xixj, with i 6= j, and only seven of these are
distinct, there must be three situations where two such products yield the same answer.
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Note first that if, for example, x1x2 = x2x4, then x1 = x4, which is impossible. Therefore,
in searching for the three situations described above, we must restrict our consideration to
the cases where xixj = xmxn for distinct i, j,m, n ∈ {1, 2, 3, 4, 5}.

Also, if we try x1x2 = x3x4, then x1
x3

= x4
x2

, which is impossible since
x1
x3

< 1 while
x4
x2

> 1.

When we eliminate these situations as well, we are left with five possibilities, and exactly
three of the five must hold (as we have exactly seven distinct numbers):

(1) x1x4 = x2x3.
(2) x1x5 = x2x3.
(3) x1x5 = x2x4.
(4) x1x5 = x3x4.
(5) x2x5 = x3x4.

Clearly, at most one of conditions (2), (3) and (4) can hold. If, for example, (2) and (3)
hold, then x2x3 = x1x5 = x2x4 and we get x3 = x4. Similar problems occur when (2) and
(4) or (3) and (4) both hold. Therefore, we are down to conditions (1), (5), and exactly
one of conditions (2), (3) and (4) hold. However, (1) and (2) imply that x4 = x5 while (4)
and (5) imply that x1 = x2. Hence, the three conditions that hold must be (1), (3) and

(5). These may be re-written as
x2
x1

=
x4
x3

,
x2
x1

=
x5
x4

and
x3
x2

=
x5
x4

, which combine to give

x2
x1

=
x3
x2

=
x4
x3

=
x5
x4

. Thus, x1, x2, x3, x4, x5 form a geometric progression.

#1291. Proposed by Chirita Marcel, Bucharest, Romania.
Given x1, x2, x3, x4, x5, x6 ∈ (0,∞) such that

1

x1 + x2
+

1

x3 + x4
+

1

x5 + x6
= 1,

prove that (
6∑
i=1

xi

)2( 6∑
i=1

xi + 9

)
≥ 54(x1 + x2)(x3 + x4)(x5 + x6).

Solution below by Henry Ricardo, New York Math Circle, henry@mec.cuny.edu.
This problem was also solved by Dionne Bailey, Elsie Campbell, and Charles Dimin-
nie, Angelo State University, San Angelo, TX, by Brian Bradie, Department
of Mathematics, Christopher Newport University, Newport News, VA, by Per-
fetti Paolo, Dipartimento di Matematica, Universitá degli studi “Tor Ver-
gata” Roma, Italy, Thu Dinh, Cal Poly Pomona, David Stoner, South Aiken
High School, Christopher York, Texas Academy of Leadership in the Human-
ities, Lamar University, Charles Diminnie and Andrew Siefker, Angelo State
University, San Angelo, TX, Eugen J. Ionascu, Department of Mathemat-
ics, Columbus State University, Columbus, GA, Corneliu Mǎnescu-Avram,
Transportation High School, Ploiesti, Romania, Armstrong Problem Solvers,
Armstrong State University, Savannah, GA and Moti Levy, Rehovot, Israel .
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Let a = x1 + x2, b = x3 + x4, and c = x5 + x6. Our problem is now equivalent to proving
that

(a+ b+ c)2(a+ b+ c+ 9) ≥ 54abc.

Noting that 1/a + 1/b + 1/c = 1 is equivalent to ab + bc + ca = abc, we use the arithmetic-
harmonic mean inequality to write

3 =
3

1/a+ 1/b+ 1/c
≤ a+ b+ c

3
,

so a+ b+ c ≥ 9 and a+ b+ c+ 9 ≥ 18. Therefore it suffices to show that (a+ b+ c)2 ≥ 3abc.
Now (a+ b+ c)2 = a2 + b2 + c2 + 2(ab+ bc+ ca) = a2 + b2 + c2 + 2abc. As the arithmetic-

geometric mean inequality implies that a2 + b2 + c2 ≥ ab + bc + ca = abc, (a + b + c)2 ≥
abc+2abc = 3abc, and we are done. We note that equality holds if and only if a = b = c = 3,
or x1 + x2 = x3 + x4 = x5 + x6 = 3.

Alternatively, one could argue as follows. We must show that (a+ b+ c)3 + 9(a+ b+ c)2 ≥
54abc. Now the AGM inequality gives us a+ b+ c ≥ 3 3

√
abc, so (a+ b+ c)3 ≥ 27abc. Then,

as in the previous proof, we can show that 9(a+ b+ c)2 ≥ 27abc, and we are done.

#1292. Proposed by Moti Levy, Rehovot, Israel.
Let f (x) and f 2 (x) be Riemann-integrable functions on [0, 1], and let g (x) be a twice-

differentiable function on [0, 1] such that g (0) = 1.
a) Show that

lim
n→∞

n∏
k=1

g

(
1

n
f

(
k

n

))
= exp

(
g′ (0)

∫ 1

0

f (x) dx

)
.

b) Find a suitable choice of the functions f (x) and g (x) to solve Problem 1892 from
Mathematics Magazine (proposed by Jose Luis Dıaz-Barrero):

lim
n→∞

1

nn

n∏
k=1

n
√
n+ (n+ 1)

√
k

√
n+
√
k

=
4

e
.

Solution by Perfetti Paolo, Dipartimento di Matematica, Universitá degli studi
“Tor Vergata” Roma, Italy. This problem was also solved by Christopher York,
Texas Academy of Leadership in the Humanities (early entrance program),
Lamar University, Beaumont, Texas.
a) Since f is integrable, it is bounded: sup0≤x≤1 |f(x)| ≤ M . It follows that 1

n

∣∣f ( k
n

)∣∣ ≤ M
n

.
We have g(x) = g(0) + g′(0)x+ o(x2) and ln(1 + x) = x+ o(x), so

g

(
k

n

)
= g(0) + g′(0)

1

n
f

(
k

n

)
+ o

(
1

n

)
= 1 + g′(0)

1

n
f

(
k

n

)
+ o

(
1

n

)
> 0.
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It follows that

ln

(
n∏
k=1

g

(
1

n
f

(
k

n

)))
=

n∑
k=1

ln

(
g

(
1

n
f

(
k

n

)))

=
n∑
k=1

ln

(
1 + g′(0)

1

n
f

(
k

n

)
+ o

(
1

n

))
=

n∑
k=1

(
g′(0)

1

n
f

(
k

n

)
+ o

(
1

n

))

= g′(0)
n∑
k=1

1

n
f

(
k

n

)
+ no

(
1

n

)
= g′(0)

n∑
k=1

1

n
f

(
k

n

)
+ o(1).

The limit is clearly the Riemann–sum

g′(0)

∫ 1

0

f(x)dx,

whence the limit upon exponentiating is

exp

(
g′(0)

∫ 1

0

f(x)dx

)
.

b) Straightforward algebra yields

lim
n→∞

1

nn

n∏
k=1

n
√
n+ (n+ 1)

√
k

√
n+
√
k

= lim
n→∞

n∏
k=1

1 +
1

n

√
k
n

1 +
√

k
n


so we have g(x) = 1 + x, f(x) =

√
x and then

exp

{
1 ·
∫ 1

0

√
x

1 +
√
x
dx

}
=

4

e

after trivial integrations (for example, let x = t2 and then replace the resulting t2 in the
numerator with ((t+ 1)− 1)2).

#1293. Proposed by Steven J. Miller, Williams College.
The following is from the 2010 Green Chicken Contest between Middlebury and Williams.
Every year Middlebury and Williams have a math competition among their students, with

the winning team getting to keep the infamous Green Chicken till the following year; see

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/index.htm

for pictures and additional history and problems. The following is a modification of a problem
from 2010.

Instead of taking a math contest, Middlebury and Williams decide to settle who gets the
Green Chicken by playing the following game. Consider the first one million positive integers.
Player A’s goal is to choose 10,000 of these numbers such that at the end of the choosing
procedure there are at least 20 pairs of chosen integers with the same positive difference
(for example, (12,39), (39,66) and (101,128) count as three pairs with a difference of 27).
A turn consists of Player A choosing 10 numbers, and then Player B moving up to 10 of
any number chosen to any unchosen number. We keep playing until A has chosen 10,000
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numbers, allowing B to get its final turn. Determine which player has a winning strategy,
and prove your claim.

Solution below by Mark Evans of Louisville, KY. This problem was also solved by
Armstrong Problem Solvers, Armstrong State University, Savannah, GA

On the last turn, B can remove up to 10 numbers leaving at least 9,990 numbers. From
those 9,990 numbers, there will be at least 9990 × 9, 989/2 differences. As the minimum
difference is 1 and the maximum difference is 999,999, we have 999,999 possible differences,
some or all of which can occur multiple times.

The average number of times a given difference occurs is (9990× 9989/2)/999999, which
is about 49.9 Thus A must win regardless of what criteria A uses for choosing the numbers.
B can delay by rejecting A’s numbers, but the rules still require the game to continue until
A has chosen 10,000 minus 10 numbers.

E-mail address: sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams
College, Williamstown, MA 01267
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