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PROBLEM DEPARTMENT

STEVEN J. MILLER∗

This department welcomes problems believed to be new and at a level appropriate for the readers

of this journal. Old problems displaying novel and elegant methods of solution are also invited.

Proposals should be accompanied by solutions if available and by any information that will assist

the editor. An asterisk (*) preceding a problem number indicates that the proposer did not submit a

solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven J. Miller

at sjm1@williams.edu; proposers of new problems are strongly encouraged to use LATEX. Please

submit each proposal and solution preferably typed or clearly written on a separate sheet, properly

identified with your name, affiliation, email address, and if it is a solution clearly state the problem

number and write down the full statement of the problem. Solutions identified as by students are

given preference.

Problems for Solution.

1288. Proposed by Gabriel Prajitura, Mathematics Department, SUNY Brock-
port.

A term ak of a sequence {an} is called a local extreme if either ak−1 ≤ ak ≥ ak+1

or ak−1 ≥ ak ≤ ak+1. (a) If a sequence has infinitely many local extreme terms prove
that the sequence is convergent if and only if the subsequence of all local extreme
terms is convergent. (b) Show that Part (a) is no longer true if in the definition of a
local extreme ≤ and ≥ are replaced by < and > respectively.

1289. Proposed by Mike Pinter, Belmont University, Nashville, TN.

In honor of the centennial of Pi Mu Epsilon, solve in base 16
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(note there are 15 different letters).

1290. Proposed by Neculai Stanciu, George Emil Palade School, Buzău, Romania
and Titu Zvonaru, Comănesti, Romania.

Consider a set of five distinct positive real numbers such that if we take all prod-
ucts of pairs of these numbers then only seven distinct numbers are formed. Thus if
the numbers are 0 < x1 < x2 < x3 < x4 < x5, if we look at the set formed from all
products xixj with i 6= j then there are only seven distinct numbers. Prove the xi’s
form an geometric progression; in other words, there is an r such that xi+1 = rxi for
i ∈ {1, 2, 3, 4}.

1291. Chirita Marcel, Bucharest, Romania.

Given x1, x2, x3, x4, x5, x6 ∈ (0,∞) such that
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prove that

(

6
∑

i=1

xi

)2( 6
∑

i=1

xi + 9

)

≥ 54(x1 + x2)(x3 + x4)(x5 + x6).

1292. Proposed by Moti Levy, Rehovot, Israel.

Let f (x) and f2 (x) be Riemann-integrable functions on [0, 1], and let g (x) be a
twice-differentiable function on [0, 1] such that g (0) = 1.
a) Show that

lim
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∫ 1
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)

.

b) Find a suitable choice of the functions f (x) and g (x) to solve Problem 1892 from
Mathematics Magazine (proposed by Jose Luis Dıaz-Barrero):
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1293. Proposed by Steven J. Miller, Williams College.

The following is from the 2010 Green Chicken Contest between Middlebury and
Williams.

Every year Middlebury and Williams have a math competition among their stu-
dents, with the winning team getting to keep the infamous Green Chicken till the
following year; see

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/index.htm

for pictures and additional history and problems. The following is a modification of
a problem from 2010.

Instead of taking a math contest, Middlebury and Williams decide to settle who
gets the Green Chicken by playing the following game. Consider the first one million
positive integers. Player A’s goal is to choose 10,000 of these numbers such that at
the end of the choosing procedure there are at least 20 pairs of chosen integers with
the same positive difference (for example, (12,39), (39,66) and (101,128) count as
three pairs with a difference of 27). A turn consists of Player A choosing 10 numbers,
and then Player B moving up to 10 of any number chosen to any unchosen number.
We keep playing until A has chosen 10,000 numbers, allowing B to get its final turn.
Determine which player has a winning strategy, and prove your claim.

Solutions: Spring 2014.

1283. Proposed by D. Andrica, E. Ionascu and R. Stephens, Columbus State
University, Columbus, GA.

Let k and n be positive integers. For the set Sk,n = {1k, 2k, . . . , nk}, consider the
question “Can Sk,n be partitioned into two nonempty subsets, each having the same
sum?” Let Pk,n be the number of ways to partition Sk,n in this manner. For example

• P1,3 = 1 with S1,3 = {1, 2} ∪ {3}.
• P1,4 = 1 with S1,4 = {1, 4} ∪ {2, 3}.
• P1,5 = P1,6 = 0.

http://web.williams.edu/Mathematics/sjmiller/public_html/greenchicken/index.htm
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• P1,7 = 4 with S1,7 = {1, 2, 4, 7}∪{3, 5, 6}, or {1, 6, 7}∪{2, 3, 4, 5}, or {2, 5, 7}∪
{1, 3, 4, 6}, or {3, 4, 7} ∪ {1, 2, 5, 6}.

• P2,n = 0 for n ≤ 6.
• P2,7 = 1 with S2,7 = {12, 22, 42, 72} ∪ {32, 52, 62}.

Question 1: Find the smallest value of n for which P2,n > 1. Explain your answer
and identify any technology used.

Question 2: Find a general “formula” for determining P , the number of ways
that the finite set S = {θ1, θ2 . . . , θn} of integers can be partitioned int tow nonempty
subsets, each having the same sum.

Solution by the Missouri State University Problem Solving Group, De-
partment of Mathematics, Missouri State University, Springfield, MO.

We answer the second question first and use that method to answer the first. If

A =

n
∑

i=1

θi

is odd, there are no solutions (since, in that case, it is impossible to split the set into

two subsets with equal sums). If A is even, then the number of solutions is half of the

coefficient of

x

∑
n

i=1
θi/2

in the expansion of

B =

n
∏

i=1

(1 + xθi).

From the theory of (ordinary) generating functions, it is clear that the coefficient of
xk in B is the number of ways that the θi’s can be chosen so that their sum is k. In
our case,

k =

(

n
∑

i=1

θi

)

/2

and the sums come in complementary pairs.
For this problem, we useMathematica to compute the coefficient of xn(n+1)(2n+1)/12

in the expansion of
∏n

i=1(1 + xi2), when n = 8, 11, 12, 15, 16, 19, 20, . . . (these are the
only values of n for which n(n+ 1)(2n+ 1)/12 is an integer). Doing so, we find that

P2,8 = 1

P2,11 = 1

P2,12 = 5

P2,15 = 43

P2,16 = 57

P2,19 = 239

P2,20 = 430.
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For completeness, we list the partitions for n = 8, 11, and 12:

S2,8 = {12, 42, 62, 72} ∪ {22, 32, 52, 82}.
S2,11 = {12, 32, 42, 52, 92, 112} ∪ {22, 62, 72, 82, 102}.
S2,12 = {12, 22, 32, 42, 52, 62, 72, 82, 112} ∪ {92, 102, 122} or

= {12, 22, 32, 42, 52, 72, 102, 112} ∪ {62, 82, 92, 122} or

= {12, 32, 42, 52, 72, 92, 122} ∪ {22, 62, 82, 102, 112} or

= {12, 32, 72, 82, 92, 112} ∪ {22, 42, 52, 62, 102, 122} or

= {12, 42, 82, 102, 122} ∪ {22, 32, 52, 62, 72, 92, 112}.

The answer to the original question is n = 12.

1285. Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA.

Find all solutions in integers a and b to the equation

(a+ 3)(a2 + 3) = b2 + 7.

Solution by David E. Manes, SUNY College at Oneonta, Oneonta, NY.

The integral solutions (a, b) of the equation are (−2, 0), (−1,±1) and (1,±3).
To see this, observe that the equation (a + 3)(a2 + 3) = b2 + 7 is equivalent to
b2 − (a + 1)3 = 1, and so is an equation of the form x2 − y3 = 1. Euler found that
the only integer solutions (x, y) of this equation are (0,−1), (±1, 0) and (±3, 2). For
a proof that these are the only rational solutions as well, see Corollary 2a in W.
Sierpinski’s Elementary Theory of Numbers, Hafner, 1964, p. 81. Hence the only
integer solutions (a, b) of b2 − (a+ 1)3 = 1 are (−2, 0), (−1,±1) and (1,±3).

Note from the editor: Many people came close to solving this directly. Several
groups found that it could be rewritten as asking for when a square is one more than a
cube. People frequently broke this up into cases, but often missed a case or assumed a
related equation had no integral solutions. The square-cube difference is a realization
of a more general problem: given integers m,n ≥ 2 when can we have xm − yn =
1 solvable in the integers? It was conjectured by Catalan that the only non-trivial
solution is 32 − 23 = 1 (as 1m − 0n = 1 always works). Not surprisingly this result
became known as Catalan’s conjecture (as noted by Kipp Johnson, Valley Catholic
School, Beaverton, Oregon, who used this result to solve the problem), and was proved
by Preda Mihăilescu in 2004. For a outline of the proof, see the following paper from
the Bulletin of the AMS:
[1] Tauno Metsänkylä, Catalan’s conjecture: another old Diophantine problem solved, Bulletin of

the American Mathematical Society 41, no. 1, 43–57) 2004.
http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf

1286. Proposed by Gabriel Prajitura, Mathematics Department, SUNY Brock-
port.

Find an arithmetic progression of natural numbers such that the distance from
any term of the progression to any perfect square is at least 7.

Solution by the Missouri State University Problem Solving Group, De-
partment of Mathematics, Missouri State University, Springfield, MO.

We claim that the arithmetic progression {120n+ 113} has the desired property.
To see this, we note that none of the integers in the range from 106 to 119 inclusive

http://www.ams.org/journals/bull/2004-41-01/S0273-0979-03-00993-5/S0273-0979-03-00993-5.pdf
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are squares modulo 120 (since in that range only 108, 112, 113, and 116 are squares
modulo 8, the first three of these are not squares modulo 5, and the last is not a
square modulo 3). Therefore none of the numbers 120n+106 through 120n+119 can
be perfect squares. Since the nearest possible squares to 120n+ 113 are 120n+ 105
and 120n+ 120, the result follows.

More generally, we claim that for any natural number d there is an arithmetic
progression such that the distance from any of its terms to any perfect square is at
least d. Arguing as above, it will suffice to show that there are natural numbers n
such that there are 2d−1 consecutive quadratic non-residues modulo n. We will prove
by induction that for any natural number N , there is an n such that −1,−2, . . . ,−N
are all quadratic non-residues modulo n. If N=1, we take n = 3. Suppose that
−1,−2, . . . ,−N are all quadratic non-residues modulo n. Denote the square-free part
of N + 1 by sqp (N + 1) and let qi, i = 1, . . . , k be the prime factors of sqp (N + 1)
that are congruent to 3 modulo 4 and ri, i = 1, . . . , ℓ those that are congruent to 1
modulo 4. Therefore

sqp (N + 1) = 2ǫ
k
∏

i=1

qi

ℓ
∏

i=1

ri,

where ǫ = 0 or 1. Use the Chinese Remainder Theorem to choose a prime p such that

p ≡ −1 mod 8

k
∏

i=1

qi and p ≡ 1 mod

ℓ
∏

i=1

ri

(there are infinitely many such primes by Dirichlet’s theorem). Using basic properties

of the Legendre symbol we have
(

−1
p

)

= −1, since p ≡ 3 mod 4, and
(

2ǫ

p

)

= 1

(regardless of the value of ǫ), since p ≡ 7 mod 8. By Quadratic Reciprocity
(
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p

)

=

(

p

qi

)
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(p−1)(qi−1)/4

=

(−1
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)

(−1) [since p ≡ −1 mod qi and since p ≡ qi ≡ 3 mod 4]

= (−1) (−1) [since qi ≡ 3 mod 4]
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and
(
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p

)

=

(

p
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)

(−1)(p−1)(ri−1)/4

=

(

1
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)

(1) [since p ≡ 1 mod ri and since ri ≡ 1 mod 4 and p− 1 is even]

= 1.

Combining the results above
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We claim that −1,−2, . . . ,−N are quadratic non-residues modulo pn. If −k were
a quadratic residue mod pn, then there would be an x such that x2 ≡ −k mod pn,
but this would force x2 ≡ −k mod n, which is impossible. Similarly, − (N + 1) is a
quadratic non-residue modulo pn, since it is modulo p (regardless of its status modulo
n). Therefore −1,−2, . . . ,− (N + 1) are all quadratic non-residues modulo pn and
the result follows by induction.

This problem was also solved and generalized by Brian D. Beasley, Presbyterian
College, Clinton, SC, shortly after the first solution was received; we give his solution
below (but in the interest of space not his generalization).

It was also solved by Kipp Johnson, Valley Catholic School, Beaverton, Oregon.
His solution is similar but instead uses the progression {192n+ 184 : n ≥ 0}. Abhay
Malik from the Episcopal Academy 9th Grade solved it by looking at {5600n+56 : n ≥
0}.

To solve the original problem, we first calculate the set of squares modulo 144,
obtaining {0, 1, 4, 9, 16, 25, 36, 49, 52, 64, 73, 81, 97, 100, 112, 121}. Since there is a gap
of length 23 between the squares 121 and 0, we have two arithmetic progressions of
natural numbers such that the distance from any term of either progression to any
square is at least 11: They are {144n+ 132 : n ≥ 0} and {144n+ 133 : n ≥ 0}.


