
PI MU EPSILON: PROBLEMS AND SOLUTIONS: SPRING 2015

STEVEN J. MILLER (EDITOR)

1. Problems: Spring 2015

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.

#1300: D. M. Bătineu-Giurgiu, Matei Basarab National College, Bucharest, Romania
and Neculai Stanciu, George Emil Palade School Buzău, Romania.

Let {an} be a sequence of positive real numbers such that limn→∞ an/n! = a > 0. Find

lim
n→∞

( n+1
√
an+1 − n

√
an) .

#1301: Kenneth B. Davenport, Dallas, PA.
Earlier problems in this journal concerned determining closed form solutions to sums of

pentagonal numbers (a solution is given in volume 12, number 7, Fall 2007, pages 433–434,
problem #1147). Consider more generally the sum of reciprocals of polygonal numbers with
an odd number of sides; explicitly, prove

∞
∑

k=1

2

((2n+ 1)k − (2n− 1))k

=
π

2n− 1

(

csc

(

2π

2n+ 1

)

− tan

(

π

2n+ 1

))

+
2 log(4n+ 2)

2n− 1

− 4

2n− 1

n
∑

j=1

cos

(

4jπ

2n+ 1

)

log

(

sin

(

πj

2n+ 1

))

.

#1302: Steven Finch, Harvard University, Cambridge, MA.

Date: March 19, 2015.
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Let A, B, C, D be independent uniform random points on the unit sphere Σ in R3. The
points A, B, C determine a unique disk ∆ inscribed within Σ almost surely. Let Γ denote
the oblique circular cone with base ∆ and apex D. The volume ω of Γ cannot exceed 32π/81.
Find the probability density function for ω in closed-form. Find the first and second moments
of ω as well.

Note: The density function here is, in fact, algebraic in ω! This is believed to be rare for
such problems in geometric probability.

#1303: E. Ionascu and R. Stephens, Columbus State University, Columbus, GA.
Suppose we have K dollars in an account that accumulates compound interest at the rate

of i > 0 per time period and that a payment of P is made from that account at the end of
each time period for n periods such that the balance in the account after the last payment is
zero. This is an example of what, in Financial Mathematics, is called an Ordinary Annunity
Certain with

• Effective Interest Rate i,
• Discount Factor v = 1

1+i
, and

• Unit Present Value a = K
P
= v + v2 + · · ·+ vn = 1−vn

i
.

When n > 2, K, and P (and therefore a) are known, it is desirable to determine the
interest rate i. Note that if n = 2, then the quadratic a = (1 + i)−1 + (1 + i)−2 is easily
solved for i, but for n > 2 it is difficult or impossible to find a closed form exact solution for
i in the equation a = (1 + i)−1 + · · ·+ (1 + i)−n. Various methods for estimating i are well

known. For example, 2(n−a)
a(n+1)

is a good estimate when n is small and
1−( a

n
)2

a
is a good estimate

when n is large.
Consider i∗ > 0 as an estimate for i. Then our estimated Discount Factor is v∗ =

1
1+i∗

and

our estimated Unit Present Value is a∗ = v∗ + v2∗ + ...+ vn∗ = 1−vn
∗

i∗
. Show that

i∗∗ = i∗
a∗(

a∗
a
)− nvn+1

∗

a∗ − nvn+1
∗

.

is positive and a better estimate for i than i∗, in the sense that if i∗ < i then i∗∗ > i∗ and if
i < i∗ then i∗∗ < i∗. Note that equation (1) appears in JFEP, V. 13, No. 2. The empirical
evidence indicates that this significantly improves any reasonable estimate of i, but it is
not the case that i∗∗ is always between i and i∗. Establishing the conditions under which
|i− i∗∗| < |i− i∗| is an open problem.

#1304: Steven J. Miller, Williams College, Williamstown, MA.
The following problem is a generalization of one from the 2014 Green Chicken competition

between Middlebury and Williams. We say a positive integer n is k-ladderful if we have

n = p11p
2
2 · · · pkk,

where we do not assume the primes are adjacent, distinct, or even in increasing order. We
give a few examples.

• The only 0-ladderful number is 1.
• The 1-ladderful numbers are the primes.
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• The 2-ladderful numbers are either of the form pq2 (for two distinct primes) or pp2 =
p3. For example, 75 = 3 · 52, 98 = 2 · 72, 44 = 11 · 22 and 8 = 2 · 22 = 23 are all
3-ladderful.

• There are a lot more possibilities for 3-ladderful numbers. Let p, q and r denote three
distinct primes. They could be of the form pq2r3, or p3r3 = p·p2 ·r3, or pq5 = p·q2 ·q3,
or p4q2 = p · q2 · p3, or finally p6 = p · p2 · p3.

Let L denote the set of ladderful numbers; this means n ∈ L if and only if there is a k
such that n is a k-ladderful number. Determine the growth rate of the ladderful numbers.
Explicitly, if L(x) is the number of ladderful numbers at most x, find constants r and δ such
that there

0 < C1 ≤ lim
x→∞

L(x)
xr/ logδ x

≤ C2 < ∞.

#1305: Steven J. Miller, Williams College, Williamstown, MA.
Let Ntwin be the set of all integers whose only prime factors are twin primes (we say p is

a twin prime if it is prime and either p + 2 or p − 2 is also prime, as except for 2 and 3 all
neighboring primes are at least 2 units apart). Thus 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and
25 are all in Ntwin while 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23 and 24 are not. Does

S :=
∑

n∈Ntwin

1

n

converge or diverge? If it converges approximate the sum.; if it diverges approximate (as a
function of x) S(x) :=

∑

n∈Ntwin,n≤x 1/n.

2. Solutions

Problems solved after the last issue went to press: #1290 by the Skidmore College Problem
Group.

#1294: Proposed by Chirita Marcel, Bucharest, Romania. Let f be a differentiable function
such that, for some a, b satisfying 0 < a < b < 1 we have

∫ a

0

f(x)dx =

∫ 1

b

f(x)dx = 0.

Prove that
∣

∣

∣

∣

∫ 1

0

f(x)dx

∣

∣

∣

∣

≤ 1− a+ b

4
sup

x∈(0,1)
|f ′(x)|.

Solution below by Panagiotis T. Krasopoulos, Social Insurance Institute, Athens,

Greece, solved at the same time by E. Ionascu, Columbus State University, Colum-

bus, GA. Also solved by Ethan Gegner, Taylor University, Upland, IN, Perfetti
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Paolo, Dipartimento di Matematica, Università degli studi di Tor Vergata

Roma, C. Edwards, E. Ionascu and R. Stephens, Columbus State Univer-

sity, Columbus, GA, Mark Evans, Louisville, KY, Hongwei Chen, Christopher

Newport University, the Missouri State Problem Solving Group.
Let us define the following function, which is twice differentiable in (0, 1),

F (x) =

∫ x

0

f(s)ds.

It is also true that F (0) = F (a) = 0, F (b) = F (1) =
∫ 1

0
f(s)ds. Next let us use three times

the Quadratic Mean Value Theorem. Thus, there are ξ1, ξ2, ξ3 ∈ (0, 1), such that

F (0)− F (b) = F
′

(b)(0− b) + F
′′

(ξ1)
(0− b)2

2

F (a)− F (b) = F
′

(b)(a− b) + F
′′

(ξ2)
(a− b)2

2

F (1)− F (b) = F
′

(b)(1− b) + F
′′

(ξ3)
(1− b)2

2
.

The last gives F
′

(b) = F
′′

(ξ3)
b−1
2
. We substitute this into the other two equations above and

find

−F (b) = F
′′

(ξ3)
b− b2

2
+ F

′′

(ξ1)
b2

2

−F (b) = F
′′

(ξ3)
(b− 1)(a− b)

2
+ F

′′

(ξ2)
(a− b)2

2
.

Since F
′′

(x) = f
′

(x), the above equations become

|F (b)| ≤ |F ′′

(ξ3)|
b− b2

2
+ |F ′′

(ξ1)|
b2

2
≤ b

2
sup

x∈(0,1)
|f ′

(x)|,

and

|F (b)| ≤ |F ′′

(ξ3)|
(b− 1)(a− b)

2
+ |F ′′

(ξ2)|
(a− b)2

2
≤ (b− a)(1− a)

2
sup

x∈(0,1)
|f ′

(x)|.

By adding the above inequalities we get

|F (b)| =

∣

∣

∣

∣

∫ 1

0

f(s)ds

∣

∣

∣

∣

≤ b+ (b− a)(1− a)

4
sup

x∈(0,1)
|f ′

(x)|.

The upper bound that we have found is better than the problem’s bound. Since 0 < b−a < 1
we have b+ (b− a)(1− a) < b+ 1− a. This completes the proof.

#1295: Proposed by Moti Levy, Rehovot, Israel. This problem is related to Problem 1889

proposed by Gary Gordon and Peter McGrath in Mathematics Magazine. For every positive
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integer k, consider the series

Sk =

(

1 +
1

2
+

1

3
+ · · ·+ 1

k

)

−
(

1

k + 1
+

1

k + 2
+ · · ·+ 1

2k

)

+

(

1

2k + 1
+

1

2k + 2
+ · · ·+ 1

3k

)

−
(

1

3k + 1
+

1

3k + 2
+ · · ·+ 1

4k

)

± · · · .

(a) Show that Hk > Sk > αHk for some α, 0 < α < 1. Hk =

k
∑

m=1

1
m

is the harmonic series.

(b) Prove that limk→∞ (Hk − Sk) = ln π
2
.

(c) Find a closed form of Sk (with finite number of summands).

Check your solution by evaluating S8 =
(

1
16

+
√
2
8
+ 1

4

√√
2 + 2

)

π + 1
8
ln 2.

(d) Show that limk→∞

(

k−1
∑

m=1

π
2k sin mπ

k

− ln 2k
π

)

= γ, where γ is the Euler-Mascheroni constant.

Solution by Hongwei Chen, Department of Mathematics, Christopher Newport

University, Newport News, Virginia. Also solved by E. Ionascu, Columbus State

University, Columbus, GA.
First, we establish two expressions for Sk:

(1) Sk =
∑∞

n=0 (−1)n(H(n+1)k −Hnk), where H0 := 0.

(2) Sk =
∫ 1

0
1+x+x2+···+xk−1

1+xk dx.

The expression (1) follows from the definition of the harmonic series directly. The solution
to Math Magazine Problem 1889 gave a proof of the expression (2). We offer another proof
here. Define

fk(x) = (1 + x+ · · ·+ xk−1)− (xk + xk+1 + · · ·+ x2k−1)

+(x2k + x2k+1 + · · ·+ x3k−1)− (x3k + x3k+1 + · · ·+ x4k−1) + · · · .

The absolutely convergence on (−1, 1) of fk(x) enables us to rearrange fk(x) as

fk(x) = (1− xk + x2k − x3k + · · · ) + (x− xk+1 + x2k+1 − x3k+1 + · · ·+)

+ · · ·+ (xk−1 − x2k−1 + x3k−1 − x4k−1 + · · · ).

Summing these separate geometric series yields

fk(x) =
1

1 + xk
+

x

1 + xk
+ · · ·+ xk−1

1 + xk
=

1 + x+ · · ·+ xk−1

1 + xk
.

Now integrating fk(x) gives

Sk =

∫ 1

0

fk(x) dx =

∫ 1

0

1 + x+ x2 + · · ·+ xk−1

1 + xk
dx

as desired.
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(a). Note that

Hk =
k
∑

n=1

1

n
=

∫ 1

0

(1 + x+ · · ·+ xk−1) dx.

Thus, by (2) we have

Hk − Sk =

∫ 1

0

(1 + x+ · · ·+ xk−1)

(

1− 1

1 + xk

)

dx > 0.

On the other hand, again by (2) we have

Sn+1 − Sn =

∫ 1

0

2xn

(1 + xn)(1 + xn+1)
dx >

∫ 1

0

xn

1 + xn+1
dx =

1

n + 1
ln 2,

where the inequality 1 + xn > 2xn in [0, 1) is used. Therefore,

Sk = S1 +

k−1
∑

n=1

(Sn+1 − Sn) > ln 2 +

(

1

2
+

1

3
+ · · ·+ 1

k

)

ln 2 = (ln 2)Hk.

This shows part (a) with 0 < α = ln 2 < 1.

(b). Recall that

Hk = ln k + γ +
1

2k
+O(1/k2),

where γ is the Euler-Mascheroni constant. We find that

H(n+1)k −Hnk = ln

(

n + 1

n

)

− 1

2kn(n+ 1)
+

1

k2
O(1/n2).

By (1) we obtain that

Hk − Sk =
∞
∑

n=1

(−1)n+1 ln

(

n + 1

n

)

+
1

2k

∞
∑

n=1

(−1)n

n(n+ 1)
+

1

k2
O
(

∑

1/n2
)

,

and so

lim
k→∞

(Hk − Sk) =

∞
∑

n=1

(−1)n+1 ln

(

n+ 1

n

)

= ln

(

∞
∏

n=1

(

n+ 1

n

)(−1)n+1
)

.

This, together with the Wallis formula
∞
∏

n=1

(

n+ 1

n

)(−1)n+1

=
2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7 · · · =

π

2

proves the part (b).

(c). We show that

Sk =
1

k
ln 2 +

π

2k

k−1
∑

l=1

csc

(

lπ

k

)

. (∗)

To this end, first notice that
∫ 1

0

xk−1 dx

1 + xk
=

1

k

∫ 1

0

dt

1 + t
=

1

k
ln 2.
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We then observe that
∫ 1

0

1 + x+ · · ·+ xk−2

1 + xk
dx =

1

2

k−1
∑

l=1

∫ 1

0

xl−1 + xk−l−1

1 + xk
dx.

The substitution x = 1/t yields
∫ 1

0

xk−l−1

1 + xk
dx =

∫ ∞

1

tl−1

1 + tk
dt.

Euler’s reflection formula implies
∫ 1

0

xl−1 + xk−l−1

1 + xk
dx =

∫ ∞

0

xl−1

1 + xk
dx =

π

k
csc

(

lπ

k

)

.

In summary, by (2) we find that

Sk =

∫ 1

0

xk−1

1 + xk
dx+

∫ 1

0

1 + x+ · · ·+ xk−2

1 + xk
dx =

1

k
ln 2 +

π

2k

k−1
∑

l=1

csc

(

lπ

k

)

as claimed. Moreover, appealing to the facts that

csc
(π

2

)

= 1, csc

(

lπ

k

)

= csc

(

(k − l)π

k

)

, (1 ≤ l < k),

we can rewrite

Sk =

{

1
k
ln 2 + π

k

∑(k−1)/2
l=1 csc

(

lπ
k

)

, when k is odd,
1
k
ln 2 + π

2k
+ π

k

∑k/2−1
l=1 csc

(

lπ
k

)

, when k is even.

In particular, we find that

S8 =
1

8
ln 2 +

π

16
+

π

8

3
∑

l=1

csc

(

lπ

k

)

=
1

8
ln 2 +

π

16
+

π

8

(

csc
(π

8

)

+ csc
(π

4

)

+ csc

(

3π

8

))

=
1

8
ln 2 +

π

16
+

π

8

(

csc
(π

4

)

+ 4 cos
(π

8

))

=
1

8
ln 2 +

π

16
+

π

8

(√
2 + 2

√

2 +
√
2

)

,

where we have used

csc(π/8) + csc(3π/8) =
sin(3π/8) + sin(π/8)

sin(π/8) sin(3π/8)

=
2 sin(π/4) cos(π/8)

sin(π/8) cos(π/8)
= 4 cos(π/8) =

1

2

√

2 +
√
2.

Remark. Using the partial fraction decomposition and the kth roots of −1, the solution
of Problem 11499 in Amer. Math. Monthly 119, 2012, p. 254 shows that

Sk =
1

k
ln 2 +

π

k2

[k/2]
∑

l=1

(k + 1− 2l) cot

(

(2l − 1)π

2k

)

.
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This can be derived by (∗) via the following identity (For example, see H. Chen, Excursions
in Classical Analysis, MAA, 2010, P.80)

k−1
∑

l=1

csc

(

lπ

k

)

= −1

k

k
∑

l=1

(2l − 1) cot

(

(2l − 1)π

2k

)

.

(d). The closed form of Sk in (∗) implies

k−1
∑

l=1

π

2k sin
(

lπ
k

) − ln

(

2k

π

)

= Sk −
1

k
ln 2− ln

(

2k

π

)

=
(

Sk −Hk − ln
(π

2

))

+Hk − ln k − 1

k
ln 2.

Letting k → ∞, in view of the result (b), we prove that

lim
k→∞

(

k−1
∑

l=1

π

2k sin
(

lπ
k

) − ln

(

2k

π

)

)

= lim
k→∞

(Hk − ln k) = γ.

#1296: Proposed by Tom Moore, Bridgewater State University, Bridgewater, MA 02325
In this problem all variables represent positive integers. (i) Prove that a2 + b2 = ab is

impossible. (ii) If a, b, c satisfy a2 + b2 + c2 = abc, then prove that 27|abc. (iii) If a, b, c, d
satisfy a2 + b2 + c2 + d2 = abcd, then prove that 16|abcd. (iv⋆) Prove or disprove: if a, b, c,
d, e satisfy a2 + b2 + c2 + d2 + e2 = abcde, then 9|abcde. More generally, what might be true
for the sum of n squares?

Solution below by E. Ionascu at CSU, Columbus, GA. Also solved by Josiah Banks,

Youngstown State University, Youngstown, Ohio, the Missouri State Problem

Solving Group.

(i) There is a common idea to all parts, which is to treat each equation as a quadratic in

one of the variables. In this case, solving for a we get a = b±
√
b2−4b2

2
= b1±

√
3i

2
and so a/b

which is a positive rational cannot be at the same time equal to a pure complex number.

(ii) Again, solving for a we get a = bc±
√
∆

2
where ∆ := b2c2 − 4(b2 + c2). If b and c are not

divisible by 3, then a2 ≡ b2 ≡ 1 (mod 3). Hence ∆ := b2c2 − 4(b2 + c2) ≡ 1− 4(2) = −7 ≡ 2
(mod 3). Hence ∆ cannot be a perfect square. It follows that b or c is divisible by 3. If
only one of them is divisible by 3 then we get ∆ ≡ −4 ≡ 2 (mod 3) and again ∆ cannot be
a perfect square. It follows that b and c are both divisible by 3 and then a must be divisible
by 3. Hence 27|abc. We include several solutions of this Diophantine equation:

(a, b, c) ∈ S := {(3, 3, 3), (3, 3, 6), (3, 6, 15), (3, 15, 39), · · ·}.

Remark: It seems that these solutions are generated in the following way: first b = c = 3

gives a = bc±
√
∆

2
= 9±3

2
. So , we obtain two solutions for a, one that we know, a = 3, and a

new one: a = 6. These are essentially the first two solutions in S. Next, we can take b = 3
and c = 6 in the quadratic formula, and obtain (∆ = 9[62 − 4(1 + 4)] = 9(16)) one solutions
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that we already know a = 3 and a new one: a = (1/2)[3(6) ± 3(4)] = 15. So, we have
essentially the third solution in S. This proceeders can continue indefinitely and it suggests
that we have infinitely many solutions.

(iii) In this case a = bcd±
√
∆

2
where ∆ := b2c2d2−4(b2+c2+d2). If all b, c and d are odd then

we know that b2 = (2k + 1)2 = 4k(k + 1) + 1 ≡ 1 (mod 8). Hence, ∆ ≡ 1− 4(3) = −11 ≡ 5
(mod 8). Because a perfect square is only congruent with 0, 1, or 4 (mod 8) we cannot have
∆ a square. So, at least one of the numbers b, c and d is even. Since the whole problem is
symmetric in a, b, c and d we may assume that another of these numbers is even. If only
two are even, say a and b, then the given equation implies c2 + d2 ≡ 2 ≡ abcd ≡ 0 (mod
4) which is not possible. If only three of the numbers are even, again we obtain a similar
contradiction. It remains that all the numbers are even, which proves that 16|abcd. We
include some of the solutions of this Diophantine equation

(a/2, b/2, c/2, d/2) ∈ S := {(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 3, 11),

(1, 1, 11, 41), (1, 1, 41, 153), (1, 3, 11, 131), · · · }.

(iv⋆) We are going to show that the claim 9|abcde is true. As before, we have a = bcde±
√
∆

2

where ∆ := b2c2d2e2 − 4(b2 + c2 + d2 + e2). If all of the numbers involved are not divisible
by 3, we have ∆ ≡ 1 − 4(4) = −15 ≡ 0 (mod 3). In order for ∆ to be a perfect square it is
necessary that we must have 9|∆ since 3|∆. Surprisingly we have the following lemma.
Lemma: For every x, y, z and t in {1, 4, 7} then

∆′ := xyzt− 4(x+ y + z + t) ≡ 3 (mod 9).

Proof of Lemma: We have to check basically 34 = 81 cases but because symmetry we only
have to look at just a few. First, since one of the values in {1, 4, 7} has to repeat, if it repeats
exactly once but the other two are distinct, we obtain three situations:

∆′ = (1)(1)(4)(7)− 4(1 + 1 + 4 + 7) = −24 ≡ 3 (mod 9)

∆′ = (1)(4)(4)(7)− 4(1 + 4 + 4 + 7) = 45 ≡ 3 (mod 9)

∆′ = (1)(4)(7)(7)− 4(1 + 4 + 7 + 7) = 120 ≡ 3 (mod 9).

If one repeats once and the other two are equal we get three more cases:

∆′ = (1)(1)(4)(4)− 4(1 + 1 + 4 + 4) = −24 ≡ 3 (mod 9)

∆′ = (1)(1)(7)(7)− 4(1 + 4 + 4 + 7) = −15 ≡ 3 (mod 9)

∆′ = (4)(4)(7)(7)− 4(1 + 4 + 7 + 7) = 696 ≡ 3 (mod 9).
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If it repeats exactly twice, we have six possibilities:

∆′ = (1)(1)(1)(7)− 4(1 + 1 + 1 + 7) = −33 ≡ 3 (mod 9)

∆′ = (1)(1)(1)(4)− 4(1 + 1 + 1 + 4) = −24 ≡ 3 (mod 9)

∆′ = (1)(4)(4)(4)− 4(1 + 4 + 4 + 4) = 12 ≡ 3 (mod 9)

∆′ = (7)(4)(4)(4)− 4(7 + 4 + 4 + 4) = 372 ≡ 3 (mod 9)

∆′ = (1)(7)(7)(7)− 4(1 + 7 + 7 + 7) = 255 ≡ 3 (mod 9)

∆′ = (4)(7)(7)(7)− 4(4 + 7 + 7 + 7) = 1272 ≡ 3 (mod 9).

Finally, if it repeats four times we have only three possibilities:

∆′ = (1)(1)(1)(1)− 4(1 + 1 + 1 + 1) = −15 ≡ 3 (mod 9)

∆′ = (4)(4)(4)(4)− 4(4 + 4 + 4 + 4) = 192 ≡ 3 (mod 9)

∆′ = (7)(7)(7)(7)− 4(7 + 7 + 7 + 7) = 2289 ≡ 3 (mod 9). �

Since the remainders modulo 9 of b2, c2, d2 and e2 can only be in {1, 4, 7} , our lemma implies
that ∆ cannot be a perfect square unless at least one of the numbers b, c, d or e is a multiple
of 3. In this case ∆ must be a perfect square divisible by 9 (and this is indeed possible a = 3

b = 3, c = 1, d = 1, and e = 4), and so a = bcde±
√
∆

2
is also divisible by 3. This is enough to

conclude that 9|abcde, completing the proof.
We include some of the solutions of this Diophantine equation

(a, b, c, d, e) ∈ S := {(1, 1, 3, 3, 4), (1, 1, 3, 3, 5), (1, 1, 3, 4, 9),

(1, 1, 3, 5, 12), (1, 1, 3, 9, 23), (1, 1, 3, 12, 31), · · ·}.

(v⋆) In this case, the equation becomes
∑6

i=1 x
2
i =

∏6
i=1 xi. We see that if there is any

solution, xi cannot be all odd, since the left hand side turns out to be even and the right
hand side odd. Also, if exactly one number is even then the left hand side becomes odd and
the right side even. So, we need to have at least two of the numbers even. So, the equation
can be reduced to

4x′2
1 + 4x′2

2 + x2
3 + x2

4 + x2
5 + x2

6 = 4x′
1x

′
2x3x4x5x6.

We can do an analysis modulo 3 and conclude that at least three of the numbers must be
divisible by 3. So, we could say that 108|

∏6
i=1 xi, but there seems to be no solution of this

equation so we do not want to make claims about the empty set, just in case. It is perhaps
not that difficult, employing similar techniques, to show that there are no solutions.

#1297: Proposed by Ben Klein, Davidson College, Davidson, NC.
Suppose that p(z) is a cubic polynomial over the complex numbers with distinct roots,

a1, a2, a3.

(1) Assuming p′(a1) = p′(a3), express a2 as a function of a1 and a3, and express p′(a2)
as a function of p′(a1).

(2) Assuming p′(a1) 6= p′(a3), express p
′(a2) as a function of p′(a1) and p′(a3).

Solution below by Ethan Gegner, Taylor University, Upland, IN. Also solved by
Panagiotis T. Krasopoulos Social Insurance Institute, Athens, Greece, Madhav

Sharma, Department of Mathematical Sciences, Florida Atlantic University,
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Eugen J. Ionascu, Department of Mathematics, Columbus State University,

Columbus, GA, Mark Evans, Louisville, KY, Missouri State University Prob-

lem Solving Group, Department of Mathematics, Missouri State University.
Write p(z) = C(z − a1)(z − a2)(z − a3), so that

p′(z) = C
(

3z2 − 2(a1 + a2 + a3)z + (a1a2 + a1a3 + a2a3)
)

. (2.1)

(i) Let A := p′(a1) = p′(a3). Then p′(z)− A = K(z − a1)(z − a3) for some K ∈ C, or

p′(z) = Kz2 −K(a1 + a3)z + (a1a3 + A). (2.2)

Equating coefficients in (2.1) and (2.2) yields K = 3C and a2 =
1
2
(a1 + a3).

(ii) Let α = (a1 − a2), β = (a1 − a3), γ = (a2 − a3). Then we have

p′(a1) = Cαβ = Cα(α+ γ)

p′(a3) = Cβγ = Cγ(α + γ)

p′(a2) = −Cαγ

If p′(a1) 6= −p′(a3), then it follows that

p′(a2) = − p′(a1)p
′(a3)

p′(a1) + p′(a3)
,

completing the proof.

#1299: Proposed by Steven J. Miller, Williams College, Williamstown, MA.
The following is from the 2014 Green Chicken math competition between Middlebury and

Williams Colleges. Consider all sets of 2014 distinct positive integers. For each set, look at
all the products of four distinct elements. (a) What is the largest number of distinct prod-
ucts? (b) What is the fewest number of distinct products? Prove your claims.

Solution below by Khanh Le, Ohio Wesleyan University, Delaware, Ohio. Also
solved by Kathleen Lewis, University of the Gambia, Abhay Malik and Thomas

Goebeler, The Episcopal Academy, Newtown Square, PA.
(a) Consider a set of 2014 distinct prime numbers and all of its products of four elements.
Any product is clearly unique because it has a distinct prime factorization compared to other
products of four. Therefore, there are

(

2014
4

)

distinct products of four elements in the set of
2014 distinct prime numbers, which is the maximum number of products of four possible.
Thus, the largest number of distinct products of four in all sets of 2014 distinct positive
integers is

(

2014
4

)

, or 683,489,813,501.

(b) We first show that there are always at least 8041 distinct products of four elements, and
then give a set with exactly that number. We order the elements

a1 < a2 < · · · < a2013 < a2014.

We show that there are at least 8041 distinct products of four. Indeed, consider the following
sequences of products. The first sequence is

a1a2a3a4 < a1a2a3a5 < a1a2a3a6 < · · · < a1a2a3a2014,
11



which has 2011 terms. The second sequence is

a1a2a4a2014 < a1a2a5a2014 < a1a2a6a2014 < · · · < a1a2a2013a2014,

which has 2010 terms. The third sequence is

a1a3a2013a2014 < a1a4a2013a2014 < a1a5a2013a2014 < · · · < a1a2012a2013a2014

which has 2010 terms. We continue this process, with the last sequence being

a2a2012a2013a2014 < a3a2012a2013a2014 < a4a2012a2013a2014 < · · · < a2011a2012a2013a2014,

which has 2010 terms. By comparing the last term of the first sequence to the first term
of the second sequence, it is obvious that every term in the first sequence is strictly smaller
than every term in the second sequence. Similarly, the each term in the second sequence is
strictly smaller than every term in the third, which is strictly smaller than the fourth and
so on. Hence, we have 2011 + 2010 + 2010 + 2010 = 8041 distinct products. Therefore, we
always have at least 8041 distinct products by looking at these products.

Now, we find a set with exactly 8041 distinct products. Consider

A = {21, 22, 23 · · ·22014}
(note 2 is arbitrary, and we could have chosen another number). The products of four
distinct elements of this set have the form 2k where k is the sum of four distinct numbers
between 1 and 2014. The smallest value of k is 1 + 2 + 3 + 4 = 10, and the largest one is
2011 + 2012 + 2013 + 2014 = 8050. We prove that k can be any number between 10 and
8050 by choosing certain sums of four distinct numbers between 1 and 2014 that can cover
all numbers from 10 to 8050.

• k can take on values between 10 and 2020 because we have

1+2+3+4 = 10, 1+2+3+5 = 11, 1+2+3+6 = 12, . . . , 1+2+3+2014 = 2020.

• k can also be between 2021 and 4030 because we have

1+2+4+2014 = 2021, 1+2+5+2014 = 2022, 1+2+6+2014 = 2023, . . . , 1+2+2013+2014 = 4030

• For between 4031 and 6040, we have

1+3+2013+2014 = 4031, 1+4+2013+2014 = 4032, . . . , 1+2012+2013+2014 = 6040

• Also between 6041 and 8050, we have

2+2012+2013+2014 = 6041, 3+2012+2013+2014 = 6042, . . . , 2011+2012+2013+2014 = 8050

Thus the number of distinct products in this set is 8050 − 10 + 1 = 8041. Therefore, the
fewest number of distinct products is 8041.

E-mail address : sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams

College, Williamstown, MA 01267
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