
PI MU EPSILON: PROBLEMS AND SOLUTIONS: SPRING 2016

STEVEN J. MILLER (EDITOR)

1. Problems: Spring 2016

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.

#1312: Proposed by Steven J. Miller, Department of Mathematics and Statistics, Williams
College, Williamstown, MA and Stan Wagon, Department of Mathematics, Statistics, and
Computer Science, Macalester College, St. Paul, Minnesota.

Larry Bird and Magic Johnson are playing a game of basketball; they alternating shooting
with Bird going first, and the first to make a basket wins. Assume Bird always makes a basket
with probability pB and Magic with probability pM , where pB and pM are independent
uniform random variables. (This means the probability each of them is in [a, b] ⊂ [0, 1] is
b− a, and knowledge of the value of pB gives no information on the value of pM .)

(1) What is the probability Bird wins the game?
(2) What is the probability that, when they play, Bird has as good or greater chance of

winning than Magic?

Note: for another related problem, see Math Horizons 23:2 (Nov 2015), 30.

#1313: Proposed by Mehtaab Sawhney, Commack High School, 6 Roanoke Ct., Commack,
NY 11725.

Suppose that ab + bc + ca = 8abc and a, b, c ≥ 1/5. Prove that a2 + b2 + c2 + 15abc >
15a2bc+ 15ab2c+ 15abc2. Furthermore prove that for any positive constant ǫ the inequality
a2 + b2 + c2 + 15abc > 15a2bc+ 15ab2c+ 15abc2 + ǫ a2b2c2 does not hold for all a, b, c ≥ 1/5.

Date: March 16, 2016.
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#1314: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
The following problem is an expanded version of a problem from the 2013 Green Chicken

Math Competition between Middlebury and Williams College. Show that there is a positive
Fibonacci number that is divisible by 1000, and find the smallest such number; more gener-
ally, find all positive integers N such that there exists a positive Fibonacci number Fn which
is divisibly by N , and for such N give a bound for the smallest index n that works in terms
of N .

#1315: Proposed by Steven J. Miller, Williams College, and Daniel F. Stone, Bowdoin
College.

Let

bn = a

(

b+
1

n

n−1
∑

i=1

bi

)

for n > 1, with b1 = ab

where b, a > 0.

(1) Show that if a = 1, then bn = Hn = 1 + 1/2 + 1/3 + · · ·+ 1/n is the nth harmonic
number, and thus diverges. Determine the rate of growth of bn as a function of n.

(2) Show that if a < 1, then bn is bounded and determine the best bound possible.

This problem is motivated by research of the second proposer on political polarization,
who proposes a simple mathematical model of affective polarization in which two opposing
partisans Bayesian update their beliefs about the opposition’s pro-sociality, i.e., degree to
which she is willing to sacrifice a personal interest for the greater good. The paper shows
that two seemingly unrelated cognitive biases can cause highly distorted, polarized, beliefs
about this characteristic for the opposition. One of these biases is called the false consensus
bias, which means under-estimation of the extent to which different people have different
tastes. Think about how when you’re in the mood for ice cream, it’s hard to imagine
someone wanting a salad. But some people genuinely do prefer salad then, and indeed, you
are probably under-estimating the chance of this. Stone shows this misperception can cause
actions that are consistent with tastes about what is best for the greater good to appear to
be self-serving and thus make one less liked by the opposition, causing affective polarization.
He shows a lower-bound for the expectation of such polarization after t periods of interaction
is our bn, in which b is the initial bias (under-estimation of difference in mean tastes for the
two parties) and a represents the degree to which new information affects beliefs (this is a
function of other parameters of the model).

#1316: Proposed by Mehtaab Sawhney, Commack High School.
Consider an n × n chessboard for n ≥ 2. Define a left-rook to be a rook that can only

attack the squares in the same row to its left. Similarly define right-rooks, up-rooks, and
down-rooks. Find the maximum total of right-rooks, left-rooks, up-rooks, and down-rooks,
as a function of n, such that no rook is attacking another.

#1317: Robert C. Gebhardt, Chester, NJ.
(a) A continuous differentiable function g(x) > 0, a < x < b, is revolved about the x-axis

to create a surface of revolution with area S, and a volume of revolution V . Find all functions
g(x), other than g(x) = 0 and g(x) = 2, such that the surface area S (in square units) is the
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same number as the volume V (in cubic units) for all finite choices of a and b (the areas of
the discs at each end of the volume are not included).

(b) Let f(x) and g(x) be continuous differentiable functions, a < x < b, where 0 < f(x) <
g(x). Each is revolved about the x-axis to create a volume between them. Find all such
functions f(x) and g(x) such that the surfaces’ total area S (in square units) and the volume
V (in cubic units) are the same number. The washers at each end of the volume are not
included.

2. Solutions

#1306: Proposed by David Vella, Mathematics and Computer Science Deptartment, Skid-
more College, Saratoga Springs, NY 12866.
Find all integer solutions (p, q) to the equation

qp+q + pp(p+ q)p = (p2 + q)q,

where p and q are prime numbers.
Solution below by Hongwei Chen, Department of Mathematics, Christopher New-

port University, Newport News, VA 23606. Also solved by Panagiotis T. Kra-

sopoulos, Social Insurance Institute, Athens, Greece, Khanh Le, Ohio Wes-

leyan University, Benjamin G. Klein, Department of Mathematics, Davidson

College, Davidson, NC.
Solution. We show that the only solution is (p, q) = (2, 3). First direct computation shows
that p = q = 2 is not a solution. Next, notice that if p, q > 2 then 2 | (p+ q) and 2 | (p2 + q),
and so 2 | q. This contradicts q > 2 is prime. Similarly, if p = q > 2, in view of that 2 | (p+q)
and 2 | (p2 + p) = p(p + 1), it follows that 2 | q again, giving us the same contradiction as
before. Thus, we only need to consider two cases:

(i) q = 2 and p > 2, (ii) p = 2 and q > 2.
(i). When q = 2 and p > 2, (1) becomes

4 · 2p + pp(p+ 2)p = (p2 + 2)2.

But, this is impossible because pp(p + 2)p = (p2 + 2p)p > (p2 + 2)2, and thus there is no
solution to the equation in this case.
(ii). When p = 2 and q > 2, (1) becomes

q2+q + 4(2 + q)2 = (4 + q)q,

or 16 ≡ 4q (mod q). By Fermat’s little Theorem, if a is relatively prime to a prime q then
aq−1 ≡ 1 (mod q). Hence 16 ≡ 4q (mod q) is equivalent to 4 ≡ 1 (mod q), which only holds
for q = 3 only. Direct computation verifies that p = 2, q = 3 works.

In summary, we have proved that (p, q) = (2, 3) is the only solution as claimed.

#1307: Proposed by Panagiotis T. Krasopoulos, Social Insurance Institute, Athens, Greece.
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Let p(x) be a polynomial with complex coefficients of degree n ≥ 2 with distinct roots
α1, . . . , αn and let p′(z) be its derivative. Prove elementarily (i.e., do not use contour inte-
gration and complex analysis) that

n
∑

k=1

1

p′(αk)
= 0.

First solution below by Benjamin G. Klein, Davidson College. Also solved by Henry

Ricardo, New York Math Circle (whose solution is also given as it arrived essentially
simultaneously and is beautifully written), J. Sorel, Romania, Sayok Chakravarty,

Troy High School, Fullerton, CA, Hongwei Chen, Department of Mathemat-

ics, Christopher Newport University, Khanh Le, Ohio Wesleyan University,
Missouri State University Problem Solving Group, Missouri State University,

Springfield, MO.

First Solution: Ben Klein:

Since p is a polynomial of degree n with n distinct roots, we know that p(z) = a (
∏n

k=1(z − αk))
where a is a non-zero complex constant. Then the rational function

1

p(z)
=

1/a

(z − α1) · · · (z − αn)

has a partial fraction decomposition of the form

1

p(z)
=

n
∑

k=1

Ak

z − αk

,

where the Ak are complex constants. Since, for z 6= α1,

z − α1

p(z)
=

z − α1

p(z)− 0
=

z − α1

p(z)− p(α1)
=

n
∑

k=1

Ak(z − α1)

z − α1
= A1 +

n
∑

k=2

Ak(z − α1)

z − α1
,

we can take the limit as z → α1 and discover that A1 = 1/p′(α1). Similarly, Ak = 1/p′(αk)
for k = 2, . . . , n. (We note that since the roots of p(z) are distinct, no p′(αk) is zero.)

Now
z

p(z)
=

n
∑

k=1

z
p′(αk)

z − αk

=

n
∑

k=1

z

z − αk

1

p′(αk)
.

If we let z →∞ and recall that the degree of p(z) is at least two, we have z/p(z)→ 0 and
n
∑

k=1

z

z − αk

1

p′(αk)
→

n
∑

k=1

1

p′(αk)
,

establishing the result.
Comments from the solver: This problem and generalizations of it can be found in Polya-

Szego’s Problems and Theorems in Analysis, but, as I recall, the solution there involves
methods from complex analysis. I discovered this solution after stumbling on the result
myself while teaching a course in complex analysis at Davidson. The elementary argument
above is, I believe, the same argument that was given by Euler, as reported by William
Dunham in a talk at a national MAA-AMS meeting. I did not attend this meeting but
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learned about the argument from a colleague here at Davidson who did attend. My colleague
knew I would be interested in an elementary argument since he and I had talked about the
result and he knew that I had a ‘non-elementary’ argument.

Second Solution: Henry Ricardo:

Since p(z) has distinct roots, we have the partial fraction decomposition

1

p(z)
=

n
∑

k=1

ck
z − αk

.

Then for any j, 1 ≤ j ≤ n, we see that p(z) = (z−αj)qj(z), where qj is of degree n− 1, and

1

qj(z)
=

z − αj

p(z)
=

n
∑

k=1

ck(z − αj)

z − αk

. (∗)

Since p′(αj) = qj(αj), it follows that cj = 1/p′(αj). Therefore, multiplying each member of
(∗) by qj(z), we find that

1 =

n
∑

k=1

ck
p(z)

z − αk

=

n
∑

k=1

1

p′(αk)
qk(z),

where each summand is a polynomial of degree n− 1 whose leading coefficient is the leading
coefficient of p(z). This implies that the sum is of degree n − 1; and, since the sum is
constant, the coefficient of zn−1 must be 0—that is,

n
∑

k=1

1

p′(αk)
= 0.

#1308: Proposed by Taimur Khalid, Coral Academy of Science LV.
Consider a triangle ABC. Let the external angle bisectors of angles A and B intersect at

a point D, B and C at E, and A and C at F . See Figure 1.

(1) Prove that the circumcircles of triangles ADB, BEC, and CFA intersect at a com-
mon point.

(2) Prove that this point is the incenter of △ABC.
Solution below by by Ioana Mihăilă, Cal Poly Pomona. Also solved by Shreya Dalal

and Tommy Goebeler, The Episcopal Academy, Newtown, Square, PA, and the
Skidmore College Problem Group, Saratoga Springs, NY.

Let I be the incenter of ∆ABC. Since from the hypothesis AD is the external angle bisector
of angle A, ∠DAB = (180◦ − ∠A)/2. By construction AI is the interior bisector of angle
A (the incenter of a triangle is the intersection of the angle bisectors), so ∠IAB = ∠A/2.
Therefore ∠DAI = ∠DAB + ∠IAB is a right angle. Similarly ∠DBI is a right angle.

A polygon is said to be cyclic if all its vertices lie on a circle. Recall that a quadrilateral
is cyclic if and only if its opposite angles add up to 180◦. Thus the quadrilateral DAIB is
cyclic since ∠DAI + ∠DBI = 9◦ + 90◦ = 180◦. This means that the points D,A,B, and I
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Figure 1. Triangle ABC and its external angle bisectors.

lie on a circle, and since the circumcircle of ADB is unique, it must go through the incenter
I.

Similarly, the circumcircles of triangles BEC and CFA also pass through I, thus I = T
is the common intersection point of the three circumcircles.

#1309: Proposed by Kenneth B. Davenport, Dallas, PA.
The Chebyshev polynomials are defined recursively by TN+1(x) = 2xTN (x)− TN−1(x) for

N ≥ 1, with T0(x) = 1, T1(x) = x (and thus T2(x) = 2x2 − 1 and T3(x) = 4x3 − 3x). They
have many applications in mathematics, especially in approximation theory and polynomial
interpolation. As they are of the form TN(x) = cos(N arccos(x)), it is interesting to look at
cosines (and hence also sines) of arccosines of angles. Prove

(−1)N cos(Nθ) = cos(2Nψ), (−1)N+1 sin(Nθ) = sin(2Nψ),

where

θ = arccos

(

x√
x2 + 4

)

, ψ = arctan

(

x+
√
x2 + 4

2

)

.

Solution below by Hongwei Chen, Department of Mathematics, Christopher New-

port University, Newport News, VA 23606. Also solved by Panagiotis T. Kra-

sopoulos, Social Insurance Institute, Athens, Greece, Brian Bradie, Depart-

ment of Mathematics, Christopher Newport University, Newport News, VA.
In the arguments below we use several properties of these polynomials, including the

composition identity (or nesting property) that Tmn(x) = Tm(Tn(x)) and that Tn(−x) =
(−1)nTn(x).
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Since

cos(2Nψ) = T2N(cosψ) = TN(T2(cosψ))

= TN(2 cos
2 ψ − 1) = (−1)NTN (1− 2 cos2 ψ),

in view of the fact that TN(cos θ) = cos(Nθ), it suffices to show that

1− 2 cos2 ψ = cos θ. (1)

Indeed, we have

1− 2 cos2 ψ = 1− 2

sec2 ψ
=

tan2 ψ − 1

tan2 ψ + 1

=

(

x+
√
x2+4
2

)2

− 1
(

x+
√
x2+4
2

)2

+ 1
=

x√
x2 + 4

.

This proves (1) as desired from the definition of θ, and so

(−1)N cos(Nθ) = cos(2Nψ). (2)

Next, differentiating (2) with respective to x yields

(−1)N N sin(Nθ)
dθ

dx
= 2N sin(2Nψ)

dψ

dx
. (3)

Since
dθ

dx
= − 2

x2 + 4
,
dψ

dx
=

1

x2 + 4
,

substituting them into (3), we find that

(−1)N+1 sin(Nθ) = sin(2Nψ).

#1311: Proposed by Abdilkadir Altıntaş, Emirdağ, Afyon, Turkey.
Compute the product

(

1√
3
+ tan 59◦

)(

1√
3
+ tan 58◦

)

· · ·
(

1√
3
+ tan 2◦

)(

1√
3
+ tan 1◦

)

.

Solution below by Ángel Plaza, University of Las Palmas de Gran Canaria, Spain.
Also solved by Hongwei Chen, Department of Mathematics, Christopher New-

port University, Newport News, VA 23606, Robert Gebhardt, Chester, NJ,
Alan Levine, Department of Mathematics, Franklin and Marshall College,

Lancaster, PA 17604, Panagiotis T. Krasopoulos, Social Insurance Institute,

Athens, Greece, Kenneth B. Davenport, Dallas, PA, Khanh Le, Ohio Wesleyan

University, Brian Bradie, Department of Mathematics, Christopher Newport

University, Newport News, VA, Shreya Dalal, The Episcopal Academy, New-

town Square, PA, the Missouri State University Problem Solving Group, Mis-

souri State University, Springfield, MO, and the Skidmore College Problem

Group, Saratoga Springs, NY.
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The given product is equal to 2√
3

(

4
3

)29 ≈ 4849.5, which follows considering the product of

the terms of the form

pk =

(

1√
3
+ tan(30 + k)◦

)(

1√
3
+ tan(30− k)◦

)

.

For simplicity, let a = 1√
3
= tan 30◦, and b = tan k◦, then

pk =

(

a+
a + b

1− ab

)(

a +
a− b
1 + ab

)

=
b2 + a4b2 − 2a2 (2 + b2)

−1 + a2b2
.

Now, since a2 = 1/3 we get

pk =
10b2

9
− 2

3
(2 + b2)

−1 + b2

3

=
4

3
,

from which the result follows. �

Other notes:

#1300: A correct solution was also received by Brian Bradie, Department of Mathematics,
Christopher Newport University, Newport News, VA; see the Fall 2015 issue for a solution.

#1305: (The last few lines in the solution by Josiah Banks, Youngstown State Univer-
sity, Youngstown, Ohio, were accidentally left out, and are included below.) Proposed by
Steven J. Miller, Williams College, Willamstown, MA. Let Ntwin be the set of all integers
whose only prime factors are twin primes (we say p is a twin prime if it is a prime and
either p + 2 or p − 2 is also a prime, as except for 2 and 3 all neighboring primes are
at least 2 units apart). Thus 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, and 25 are all in Ntwin while
2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 23, and 24 are not. Does

S :=
∑

n∈Ntwin

1

n

converge or diverge? If it converges approximate the sum; if it diverges approximate it (as
a function of x) S(x) :=

∑

n∈Ntwin,n≤x
1
n
.
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The solution from Banks started with

J =
∑

p∈TP

ln

(

p

p− 1

)

≤
∑

p∈TP

3 ln
(

3
2

)

p

= 3 ln

(

3

2

)

B ← (where B is Brun’s constant)

< ∞,
and ended by showing that J is within the interval (2.018, 2.036).

The following is the omitted text. The proof is concluded by noting S = eJ , where

J =
∑

p∈TP

ln

(

p

p− 1

)

and thus an approximation of S is 7.52 < S < 7.66. To see this, notice

S =
∑

n∈Ntwin

1

n
=
∏

p∈TP

(

p

p− 1

)

= e
∑

p∈TP
ln( p

p−1
) = eJ .

As J ∈ (2.018, 2.036), it follows that S ∈ (e2.018, e2.036) which implies S ∈ (7.52, 7.66).

E-mail address : sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams

College, Williamstown, MA 01267
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