
PI MU EPSILON: PROBLEMS AND SOLUTIONS: FALL 2016

STEVEN J. MILLER (EDITOR)

1. Problems: Fall 2016

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.

#1318: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
The following is from the 2009 Green Chicken Math Competition between Middlebury

and Williams Colleges. Evaluate

sin(2π/3n) sin(π/3n).

#1319: Proposed by Mehtaab Sawhney, Commack High School, 6 Roanoke Ct., Commack,
NY 11725.

A classic linear algebra problem is to calculate the determinant of the symmetric Pascal

Matrix, P , which is the n × n matrix whose (i, j)th entry is Pi,j =
(

i+j

j

)

. Notice that the

Pascal Matrix satisfies Pi,j = Pi−1,j + Pi,j−1 for i and j greater than 1, which is equivalent
to Pascal’s Identity. Building on this identity, we can consider the more general family of
matrices A(n) such that A(n) is an n× n matrix whose entries satisfy

A(n)i,j =

{

1 i = 1 and/or j = 1
A(n)i−1,j + A(n)i,j−1 + kA(n)i−1,j−1 otherwise;

notice that the symmetric Pascal Matrix is simply the case k = 0. Determine det(A(n)) as
a function of k and n.

Date: November 16, 2016.
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Hint: It is known that the Pascal Matrix has an LU factorization as a consequence of Van-
dermonde’s Identity. One approach (although not the easiest) for this problem is to show that
A(n) has an LU factorization and then use this factorization to compute the determinant.

#1320: Proposed by Mehtaab Sawhney, Commack High School, 6 Roanoke Ct., Commack,
NY 11725.

There are numerous inequalities relating real numbers which may be studied. The one
below is a little non-standard in that it has a non-symmetric choice of inputs where equality
holds, indicating that some standard techniques will not suffice for a full analysis.

Prove that

x5 + y5 + z5 + 2(
√
2− 1)xyz(xy + yz + xz) ≥ 2

√
2− 1

2
(x4y + x4z + y4x+ y4z + z4x+ z4y)

for all nonnegative real numbers x, y, and z, and show that there exists a triple (x, y, z) of
non-zero real numbers such that (1) the inequality is an equality, and (2) the three numbers
are not identical.

#1321: Proposed by Steven J. Miller, Williams College, Williamstown, MA 01267.
In 1742 Christian Goldbach wrote a letter to Leonard Euler with conjectures on writing

integers as the sum of primes. The modern formulation is to split the question, with the
binary Goldbach problem being the statement that every sufficiently large even number is
the sum of two primes and the ternary Goldbach problem every sufficiently large odd number
is the sum of three primes. It is believed that ‘sufficiently large’ means at least 4 for the
binary problem, though this is far from proved. The situation is very different in the odd
case. It has long been known to be true, and recent work of Harald Helfgott finished the
argument and showed that ‘sufficiently large’ here is at least 7; as an immediate consequence
we obtain every even number is the sum of at most 4 primes. The chain of ideas leading
to these results use the Circle Method, one of the most beautiful but also one of the most
technical arguments in number theory. It is often worthwhile seeing what can be proved with
weaker inputs. Specifically, prove elementarily that if x ≥ 2 is a positive integer, then we
may write x as a sum of at most log2(x) primes.

#1322: Proposed by Gabriel Prajitura, SUNY Brockport, Brockport, NY 14420
Construct a sequence of integers (xn)n such that the set

{

x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .

}

is dense in R.

#1323: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
The following is from the 1997 Green Chicken Math Competitifon between Middlebury

and Williams Colleges. Does any row of Pascals triangle have three consecutive entries that
in the ratio 1:2:3?

#1324: Proposed by Mehtaab Sawhney, University of Pennsylvania, Philadelphia, PA.
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The Cauchy-Schwarz Inequality, one of the most important and most used in mathematics,
states that

(

n
∑

i=1

a2i

)(

n
∑

i=1

b2i

)

≥
(

n
∑

i=1

aibi

)2

.

One natural attempt to generalize to a multidimensional sum is
(

n
∑

k=0

n
∑

ℓ=0

aℓak

)(

n
∑

k=0

n
∑

ℓ=0

bℓbk

)

≥
(

n
∑

k=0

n
∑

ℓ=0

aℓbk

)2

,

but a little inspection shows that this is actually just an equality. This suggests trying a
weighted version of the above:

(

n
∑

k=0

n
∑

ℓ=0

ck+ℓaℓak

)(

n
∑

k=0

n
∑

ℓ=0

ck+ℓbℓbk

)

≥
(

n
∑

k=0

n
∑

ℓ=0

ck+ℓaℓbk

)2

.

Part (1) is equivalent to ck+ℓ = (k + ℓ)! while part (2) is ck+ℓ =
1

k+ℓ
.

(1) Prove that
(

n
∑

k=0

n
∑

ℓ=0

(k + ℓ)!aℓak

)(

n
∑

k=0

n
∑

ℓ=0

(k + ℓ)!bℓbk

)

≥
(

n
∑

k=0

n
∑

ℓ=0

(k + ℓ)!aℓbk

)2

.

(2) Prove that
(

n
∑

k=1

n
∑

ℓ=1

1

k + ℓ
aℓak

)(

n
∑

k=1

n
∑

ℓ=1

1

k + ℓ
bℓbk

)

≥
(

n
∑

k=1

n
∑

ℓ=1

1

k + ℓ
aℓbk

)2

.

(3) (Open) Under what conditions for cj does the inequality
(

n
∑

k=0

n
∑

ℓ=0

ck+ℓaℓak

)(

n
∑

k=0

n
∑

ℓ=0

ck+ℓbℓbk

)

≥
(

n
∑

k=0

n
∑

ℓ=0

ck+ℓaℓbk

)2

hold? Note that cj > 0 is neither a necessary nor sufficient condition! (In particular
for n = 1 it can be shown that c0 = 2, c1 = −1, and c2 = 2 works while c0 = 2,
c1 = 3, and c2 = 1 doesn’t.)

#1325: Proposed by Matthew McMullen, Otterbein U., Westerville, OH.
An equable triangle is a triangle whose area is numerically equal to its perimeter. Find

infinitely many (or, better yet, all) right, equable triangles with rational side lengths.

#1326: Proposed by Steven J. Miller, Williams College, Williamstown, MA.
For each positive integer n consider an n×n chessboard, and consider all possible ways of

placing n queens on the board; remember a queen can attack anything in her row, column,
or along diagonals. If C is one such placement, let p(n; C) be the number of pawns which
can safely be placed on the board without being attacked by one of the queens, and set
p(n) = maxC p(n; C); thus p(n) = 0 for n ≤ 3, p(4) = 1 and p(5) = 3. Prove there exist
positive constants c1, c2, δ such that for all n sufficiently large, n−c2n

1−δ ≤ p(n) ≤ n−c1n
1−δ.
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In particular, this means as n grows there is a choice of queen placement so that almost all
squares are safe for pawns!

2. Solutions

Note: At the 2016 Math Camp at the College of New Jersey, run by Dan Flegler and Steve
Conrad, the problems from the previous issue were given to the participants as a challenge.
Honglin Zhu, currently at Eaglebrook School in MA and previously at the Tsinghua Univer-
sity High School in China, is commended for solving the more of these than others (he solved
#1313 and #1316).

#1313: Proposed by Mehtaab Sawhney, Commack High School.
Suppose that ab+ bc+ ca = 8abc and a, b, c ≥ 1/5. Prove that

a2 + b2 + c2 + 15abc > 15a2bc + 15ab2c+ 15abc2.

Furthermore prove that for any positive constant ǫ the inequality

a2 + b2 + c2 + 15abc > 15a2bc + 15ab2c+ 15abc2 + ǫ a2b2c2

does not hold for all a, b, c ≥ 1/5.
Suppose that ab+ bc + ca = 8abc and a, b, c ≥ 1/5. Prove that

a2 + b2 + c2 + 15abc > 15a2bc + 15ab2c+ 15abc2.

Furthermore prove that for any positive constant ǫ the inequality

a2 + b2 + c2 + 15abc > 15a2bc + 15ab2c+ 15abc2 + ǫ a2b2c2

does not hold for all a, b, c ≥ 1/5.

Solution below by Brian D. Beasley, Department of Mathematics,Presbyterian

College, Clinton, SC 29325.
(i) Without loss of generality, assume ab + bc + ca = 8abc with a ≥ b ≥ c ≥ 1/5. Let

u = 1/a, v = 1/b, and w = 1/c. Then 0 < u ≤ v ≤ w ≤ 5 with u+ v+w = 8, and the given
inequality is equivalent to

v2w2 + u2w2 + u2v2 + 15uvw > 15(vw + uw + uv),

or w2(u+ v)2 − 15w(u+ v) > uv(15− 15w+ 2w2 − uv). Let m = u+ v and n = uv, so that
w = 8−m. Substituting and simplifying, we must then prove that

m(m− 3)(m− 5)(m− 8) > n(2m2 − 17m+ 23− n),

where 3 ≤ m ≤ 16/3. Let f(m) = m(m − 3)(m− 5)(m − 8) and g(m) = 2m2 − 17m + 23.
We note that g(m) < 0 for 3 ≤ m ≤ 16/3. Thus for 3 ≤ m ≤ 5, we have f(m) ≥ 0 and
n(g(m) − n) < 0. Next, for 5 < m ≤ 16/3, since f is decreasing on (5, 16/3], we have
f(m) ≥ f(16/3) = −896/81; since 0 < u ≤ v ≤ w and u+ v > 5, we have v < 4 and hence
u > 1, so uv = u(m−u) > m−1 > 4 and thus n(g(m)−n) < −16. Hence for 3 ≤ m ≤ 16/3,
we conclude f(m) > n(g(m)− n) as needed.

(ii) Given any ǫ > 0, we seek 0 < u ≤ v ≤ w ≤ 5 with

v2w2 + u2w2 + u2v2 + 15uvw ≤ 15(vw + uw + uv) + ǫ,

or equivalently f(m) ≤ n(g(m)−n)+ǫ. Let h(x) = x(x+2)(x−3)(x−5). Since h(x) > 0 for
0 < x ≤ 3/2 and limx→0+ h(x) = 0, we may choose δ with 0 < δ ≤ 3/2 such that h(δ) < ǫ.
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Then we take u = δ, v = 3 − δ, and w = 5. For these choices, we note that f(m) = 0 and
n(g(m)− n) + ǫ = −h(δ) + ǫ > 0, so the result follows.

Addendum. In arguing that uv > 4 in the last case of part (i), we are using the fact that for
a fixed value of m in (5, 16/3], since 1 < u ≤ m/2, the function q(u) = u(m−u) is increasing
on (1, m/2] and hence must be greater than q(1).

#1316: Proposed by Mehtaab Sawhney, Commack High School.
Consider an n × n chessboard for n ≥ 2. Define a left-rook to be a rook that can only

attack the squares in the same row to its left. Similarly define right-rooks, up-rooks, and
down-rooks. Find the maximum total of right-rooks, left-rooks, up-rooks, and down-rooks,
as a function of n, such that no rook is attacking another.

Solution below by Maddi Guillaume, Ben Byrd, and Mikayla Schultz,Taylor Uni-

versity, Upland, IN, and Mark Evans, Louisville, KY. Also solved by Ioana Mi-

haila, Cal Poly Pomona, the Ashland University Undergraduate Problem Solv-

ing Group, Ashland University, Ashland, OH, and Dax Jantz, North Central

College, Naperville, IL.
It is possible to have 4n − 4 rooks by placing appropriate ones along the perimeter (put

up rooks in the top row, down rooks in the bottom row, and then left rooks in the remaining
spots on the left column and right rooks in the remaining right column). We must show that
it is impossible to have 4n− 3 or more rooks.

Assume that there is a configuration with 4n−3 rooks and this is the maximum number of
rooks that may be placed (the argument proceeds identically for the other three possibilities,
4k − 2, 4k − 1 and 4k). Take the 4n − 3 configuration that has the maximum number of
perimeter rooks. Because there are 4n− 3 rooks, there must be a rook in the interior. Since
we are assuming it is possible to place 4n− 3 rooks, this interior rook must have the ability
to be “pushed” to the perimeter (for example if it was an interior left rook, the perimeter
spot to the left must be open to allow it to work). However, pushing it to the perimeter
increases the number of perimeter rooks by 1, and contradicts this being the configuration
with the largest number of perimeter rooks, completing the proof.

#1317: Robert C. Gebhardt, Chester, NJ.
(a) A continuous differentiable function g(x) > 0, a < x < b, is revolved about the x-axis

to create a surface of revolution with area S, and a volume of revolution V . Find all functions
g(x), other than g(x) = 0 and g(x) = 2, such that the surface area S (in square units) is the
same number as the volume V (in cubic units) for all finite choices of a and b (the areas of
the discs at each end of the volume are not included).

(b) Let f(x) and g(x) be continuous differentiable functions, a < x < b, where 0 < f(x) <
g(x). Each is revolved about the x-axis to create a volume between them. Find all such
functions f(x) and g(x) such that the surfaces’ total area S (in square units) and the volume
V (in cubic units) are the same number. The washers at each end of the volume are not
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included.

Solution for part (a) below by Jennifer Johannes, from The College at Brockport, who deter-
mined the functional form of g(x) but not the final scale; thus her argument has been replaced
by the proposer’s argument towards the end.
Proof of (a): Since the volume is

V = π

∫ b

a

g(x)2dx

and the area is

S = 2π

∫ b

a

g(x)
√

1 + g′2(x)dx

we are looking for functions g > 0 such that

π

∫ b

a

g(x)2dx = 2π

∫ b

a

g(x)
√

1 + g′2(x)dx

⇐⇒
∫ b

a

g(x)2dx = 2

∫ b

a

g(x)
√

1 + g′2(x)dx

⇐⇒
∫ b

a

(

g(x)2 − 2g(x)
√

1 + g′2(x)
)

dx = 0

for every a ≤ b. This implies that

g(x)2 − 2g(x)
√

1 + g′2(x) = 0

⇐⇒ g(x)2 = 2g(x)
√

1 + g′2(x)

⇐⇒ g(x) = 2
√

1 + g′2(x)

because g > 0. This is equivalent to

g(x)2 = 4 + 4g′2(x).

This equation has a constant solution, g(x) = 2. From the proposer: As cosh2(u)−sinh2(u) =
1, where

cosh(u) =
eu + e−u

2
and sinh(u) =

eu − e−u

2
,

inspection shows the second solution is g(x) = 2 cosh(x/2).

E-mail address : sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams

College, Williamstown, MA 01267
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