
PI MU EPSILON: PROBLEMS AND SOLUTIONS: FALL 2017

STEVEN J. MILLER (EDITOR)

1. Problems: Fall 2017

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline to
submit, and anything that arrives before the issue goes to press will be acknowledged.Starting
with the Fall 2017 issue the problem session concludes with a discussion on problem solving
techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue has
increased. Second, any school that submits correct solutions to at least two problems from
the current issue will be entered in a lottery to win a pizza party (value up to $100). Each
correct solution must have at least one undergraduate participating in solving the problem;
if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2 times in
the lottery. Solutions for problems in the Spring Issue must be received by September 15,
while solutions for the Fall Issue must arrive by March 15. Congratulations to the Emmanuel
College Math Club, which is this issue’s winner!

Figure 1. Pizza motivation; can you name the theorem that’s represented here?

#1335: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.

Date: September 22, 2017.
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The following is from the 1993 Green Chicken Math Competition between Middlebury
and Williams Colleges. At State University 7 students registered for American history, 8
students for British history, and 9 students for Chinese history. No student is allowed to
take more than one history course at a time. Whenever two students from different classes
get together, they decide to drop their current history courses and add the third. Otherwise
there are no adds or drops. Is it possible for all students to end up in the same history
course?

#1336: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
The following is from the 1999 Green Chicken Math Competition between Middlebury and
Williams Colleges. An integer is powerful if each of its prime factors occurs to the second
power or more. Prove or disprove: There are an infinite number of pairs of consecutive
powerful numbers.

#1337: Proposed by Steven J. Miller, Williams College, Williamstown, MA.
A graph G is a collection of vertices V and edges E connecting pairs of vertices. Consider the
following graph. The vertices are the integers {2, 3, 4, . . . , 2017}. Two vertices are connected
by an edge if they share a divisor greater than 1; thus 30 and 1593 are connected by an edge
as 3 divides each, but 30 and 49 are not. The coloring number of a graph is the smallest
number of colors needed so that each vertex is colored and if two vertices are connected by
an edge, then those two vertices are not colored the same. Prove the coloring number is at
least 10. What is the actual value? This problem was first published in the Newsletter of the
European Mathematical Society.

#1338: Proposed by Dhruv Desai, University of Illinois at Urbana-Champaign, Champaign,
IL.
Given a set of positive real numbers a1, b1, a2, b2, . . . , an, bn, prove that it is always possible
to find a set of positive real numbers c1, d1, c2, d2, . . . , cn, dn such that, if at least one of the
ratios ci/di is less than (a1 + a2 + · · ·+ an)/(b1 + b2 + · · ·+ bn), then we can simultaneously
satisfy

• for all i ∈ {1, . . . , n} we have ai/bi < ci/di, and
• (a1 + a2 + · · ·+ an)/(b1 + b2 + · · ·+ bn) < (c1 + c2 + · · ·+ cn)/(d1 + d2 + · · ·+ dn).

#1339: Proposed by Mehtaab Sawhney, University of Pennsylvania, Philadelphia, PA.
For an integer n ≥ 2, let B be a (2n − 1) by (n − 1) board of 0’s and 1’s, and let En(B) be
the number of contiguous rectangular sub-boards of B which have an even sum. Give an
explicit formula for the minimum of En(B) as we range over all B.

For example, below is one of the possible B for n = 3 :

1 0 0 1 1 0 0

0 1 0 0 0 1 1.

It has exactly 42 even sub-boards. To be precise there are 8 even sum sub-boards of size
1× 1, 1 of size 1× 2, 4 of size 2× 2, 3 of size 3× 2, 1 of size 4× 2, 3 of size 5× 2, 1 of size
7× 2, 6 of size 2× 1, 4 of size 3× 1, 5 of size 4× 1, 4 of size 5× 1, and 2 of size 6× 1 to give
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42 even sum sub-boards in total.

#1340: Communicated by Steven J. Miller, Williams College
Zeckendorf proved that if we define the Fibonacci numbers by F1 = 1, F2 = 2 and Fn+2 =
Fn+1 + Fn then every integer can be written uniquely as a sum of non-adjacent Fibonacci
numbers. We call this the Zeckendorf decomposition; thus 2018 = 1597 + 377 + 34 + 8 + 2.
Prove this claim, and further show that if we write any N as a sum of Fibonacci numbers,
no decomposition has fewer summands than the Zeckendorf decomposition.

#1341: Proposed by Matthew Davis, Williams College
Consider an infinite one-dimensional board, where we may place checkers at any integer. We
initialize the game by placing checkers at all the positive squares, and all their negatives;
thus there are checkers only at positions ±1,±4,±9, and so on. As the game evolves, we
may have multiple checkers at the same position (similar to how one may stack checkers in
a game to make a king). At each step, you can perform one of several moves.

• You can either add or remove any finite number of checkers.
• Given integers a, k with k > 1, you may add a checker at each position akn (where n
ranges over the non-negative integers).

• If there are integers a, k with k > 1 such that for all n there is always at least
one checker at position akn, then you may remove one checker from each of these
positions.

Is it possible to move every checker inward one space in a finite number of moves? In
other words, can we reach the state where there are two checkers at 0, and then one each at
±3,±8,±15, . . . .

#1342: Proposed by Ralph Morrison, Williams College
The following is from the 2016 Green Chicken Math Competition between Middlebury and
Williams Colleges. While attending a concert, Greenie was instructed by the performer
to “call her, maybe.” Unfortunately Greenie can’t remember the performer’s Skype name
exactly, but she remembers noticing that it had no repeated digits, was divisible by 3 but
not by 6 or by 9, and that it was the largest possible integer satisfying all those properties.
What was the number?

GRE Practice #1: Proposed by Steven Miller, Williams College
One of the greatest challenges students have with the math GRE subject test is that while

they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous
to guess). Consider the following old GRE problem (a discussion of the answer is included
after the solutions to earlier PME problems). If a > 0, what is the value of

∫

2a

0

∫

0

−
√

2ay−y2

√

x2 + y2dxdy.

(a) 16

9
a3 (b) 32

9
a3 (c) π

2
a2 (d) 8π

3
a2 (e) 2a4.
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2. Solutions

In addition to the solutions below, Problems #1323 and #1325 were solved by the Skidmore
College Problem Group, but their answers arrived after the Spring 2017 issue went to press.

#1322: Proposed by Gabriel Prajitura, SUNY Brockport, Brockport, NY 14420
Construct a sequence of integers (xn)n such that the set

{

x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .

}

is dense in R.

Solution below by Colin Scheibner, St. Olaf Problem Solving Group, St. Olaf Col-

lege, Northfield, MN (note: this problem solving group also submitted correct solutions
to #1323 and #1325 after the previous issue went to press).

For all m ∈ N0, let

Lm :=

{

k

2m
: k ∈ Z,−m2m ≤ k ≤ m2m

}

.

Note that ∪∞
m=0Lm is the set of dyadic fractions, which is dense in R. It suffices to construct

a sequence of integers {xn} such that for all m ∈ N0, Lm ⊆ {yj}∞j=1, where yj =
1

j

∑j
n=1

xn.

The construction proceeds by induction on n.
For n = 1, let x1 = 0. Now for some N ≥ 1 assume that {xn}Nn=1 has been constructed

and let M = max{m : Lm ⊆ {yi}Ni=1}. Note that M is well defined since L0 ⊆ {y1}. The
proof will be complete if we construct xN+1 through xr (for some r > N + 1) such that

LM+1 ⊆ {yj}rj=1. Let xN+1 = −
∑N

n=1
xn, and write k = (M +1)2M+1. We may choose a set

of distinct integers r−k < r−k+1 < · · · < rk such that 2M+1 divides ri and ri > N +1 for each
i = −k, . . . , k. (Note that the ri are not uniquely determined, but any choice that satisfies
the preceding criteria will work.) Define xN+1, xN+2, . . . , xrk as follows:

xn =











iri
2M+1 if n = ri for some i ∈ {−k, . . . , k}
− iri

2M+1 if n = ri + 1 for some i ∈ {−k, . . . , k}
0 otherwise.

First note that the definition is unambiguous (i.e., the three cases are disjoint) since
|ri − rj | > 1 whenever i 6= j. Note that each xn is an integer since 2M+1 divides each ri.
Also, one may easily check that

yj =

{

i
2M+1 if j = ri for some i ∈ {−k, . . . , k}
0 otherwise

whenever N+1 ≤ j ≤ rk. Consequently, LM+1 ⊆ {yj}rk+1

j=N+1
⊆ {yj}rk+1

j=1
. Hence the inductive

step and the proof are complete.

#1327: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
4



Figure 2. Configuration for Problem #1326.

The following is from the 1989 Green Chicken Math Competition between Middlebury
and Williams Colleges. The aerial view of a roller-coaster is a perfect circle. Show that there
are two diametrically opposed points on the roller-coaster having the same height.

Solution below by Emmanuel College Math Club. Also solved by the Skidmore College

Problem Group.
For every point x along the roller-coaster, define the function h(x) to be the height of

the roller-coaster at x. It is fair to assume that h is continuous, otherwise we have a rather
unsafe roller-coaster.

Then, define the function f(x) = h(x)−h(x′), where x′ is the point diametrically opposed
to x. We want to show that some point c makes f(c) = 0. Note that f is continuous, as well
(if f were discontinuous at x, this would imply h is discontinuous at x or x′).

If f is everywhere 0, then we’re clearly done, so suppose that some input a makes f(a) 6= 0.
Without loss of generality, f(a) > 0. Let a′ be the point diametrically opposed to a. By the
definition of f , we have f(a) < 0. Since f is continuous, the Intermediate Value Theorem
applies and thus if we travel from a to a′ clockwise we must pass some point c which satisfies
f(c) = 0. (Note the IVT is for a function of a real variable; we can use it by writing a = eiθa

with 0 ≤ θa < 2π.)

#1330: Proposed by Ioana Mihǎilǎ, Cal Poly Pomona.
Let ABCD be a quadrilateral with opposite right angles A and C. Let BE and DG be
the perpendiculars dropped on AC from B and D respectively (see Figure 2). Show that
AE = GC.

Solution below by Robert O’Connell, Longmeadow High School, Longmeadow,

MA. Also solved by Get Stoked Student Problem Solving Group, Mountain Lakes

High School, NJ, Emmanuel College Math Club, Nate Vogel, North Central
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College, Arjun Puri, Loyd Templeton and George Zhang, Memphis University

School, and the Skidmore College Problem Group.
Since ∠DAB and ∠BCD are right, then ∠DAE complementary to ∠BAE and ∠BCG

complementary to ∠DCG. Since BE is perpendicular to AC and DG is perpendicular to
AC, then ∠AEB, ∠CEB, ∠AGD, and ∠CGD are right. The acute angles of a right triangle
are complementary. Therefore, ∠BAE and ∠ABE are complementary; ∠DCG and ∠CDG
are complementary; ∠DAE and ∠GDA are complementary; and ∠BCG and ∠EBC are
complementary.

By the Congruent Complements Theorem, ∠DAE ∼= ∠ABE, ∠GDA ∼= ∠EAB, ∠BCG ∼=
∠CDG, and ∠EBC ∼= ∠GCD. By the AA Triangle Similarity Postulate, triangle DAG is
similar to triangle ABE, and triangle BCE is similar to triangle CDG. Thus AE/DG =
BE/AG andGC/BE = DG/CE, which implies BE·DG = AE·AG andBE·DG = CE·GC.
Therefore,

AE · AG = CE ·GC

AE · (AC −GC) = (AC −AE) ·GC

AE · AC − AE ·GC = AC ·GC −AE ·GC

AE · AC = AC ·GC

and thus AE = GC.

#1331: Proposed by Greg Oman, University of Colorado, Colorado Springs.
A nonempty subset G of R is an additive subgroup of R provided for any x, y ∈ G, also

x − y ∈ G. Now suppose that f : R → R is both continuous and injective. Assume further
that f preserves additive subgroups of R; that is, if G is an additive subgroup of R, then
so is f [G] := {f(g) : g ∈ G}. Prove that there exists a real number a ∈ R such that
f(x) = ax for all x ∈ R. Note: it is well-known that a continuous f : R → R for which
f(x + y) = f(x) + f(y) for all x, y ∈ R is necessarily linear. The purpose of this exercise
is to show that if one strengthens “continuous” to “continuous and injective”, then one can
weaken the assumption of additivity to preservation of subgroups.

Solution below by Eugen J. Ionascu, Columbus State University.
Our proof is based on a few, more or less known, lemmas.

Lemma 2.1. Every additive subgroup S of R is either
(i) cyclic, i.e., S =< t >:= {kt : k ∈ Z} for some t ≥ 0, or
(ii) S is dense in R.

Lemma 2.2. Every f : R → R which is both continuous and injective is strictly increasing
or decreasing.

Lemma 2.3. Every f : R → R which is both continuous and injective has the property that
f−1(S) is dense in R if S is dense in R.

Before we prove these lemmas, let’s see how the problem can be solved. We consider the
cyclic group G :=< x >= {kx : k ∈ Z} for some x > 0. Since S := f [G] is an additive
subgroup G of R, by Lemma 2.1, we either have S =< t > (t > 0) or S is dense. In the
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second case, by Lemma 2.3, G = f−1(S) is dense in R. Since G is clearly not dense, it
remains that S =< t >.

By Lemma 2.3, f must be strictly increasing or strictly decreasing. Without loss of
generality we may assume it is strictly increasing (otherwise consider −f instead). It is
clear that f(0) = 0 since {0} is the only additive subgroup with only one element. Because
x is the smallest positive element of G, then f(x) must be the smallest element of S, i.e.
f(x) = t. By induction, we see that f(kx) = kt for all k ∈ Z. So, this can be written as
f(kx) = kf(x) for all k ∈ Z. We can use this argument again but start with x′ := x/m, for
some m ∈ N. We conclude that f(mx′) = mf(x′) or f(x/m) = f(x)/m. Then

f(
k

m
x) = f(kx′) = kf(x′) = kf(x/m) =

k

m
f(x), k ∈ Z.

Since m was arbitrary, taking x = 1 and setting a = f(1) we obtain f(q) = qa for all q ∈ Q.
Becasue f is continuous, this equality should be taking place for all real q, hence f must be
linear.

Proof of Lemma 2.1. If S = {0} then clearly, the first case applies. So, we may assume
that S 6= {0}. Hence, we may define

t := inf{s : s > 0, s ∈ S}.
There are two possiblities. Either t = 0 or t > 0. If t = 0, then let us show that S is dense.
Indeed, for every fixed x ∈ R, and ǫ > 0, consider s ∈ S so that 0 < s ≤ ǫ. Then, let k be
the greatest integer such that ks ≤ x, i.e., k = ⌊x/s⌋. This implies ks ≤ x < (k + 1)s or
0 ≤ x− ks < s ≤ ǫ. Since ks ∈ S, it follows that S is dense in R.

If t > 0, then every element in S must be of the form ks for some integer k. By way
of contradiction, suppose this were not true. Then, there exists x ∈ S not of the form ks.
Let ℓ = ⌊x/t⌋ and observe that ℓt < x < (ℓ + 1)t. This means that t′ := x − ℓt has the
properties: t′ > 0, t′ ∈ S and t′ < t. This contradicts the definition of t. It remains that
S =< t >. �

Proof of Lemma 2.2. Let us assume by way of contradiction that f is neither strictly
increasing nor strictly decreasing. Then there exits x, y, z such that x < y < z and so that
f(x) < f(y) and f(z) < f(y) or the other way around, i.e, f(x) > f(y) and f(z) > f(y).
Using the Intermediate Value Theorem (IVT), we can find c1 ∈ (x, y) and c2 ∈ (y, z) so that
f(c1) = f(c2) = ξ with ξ strictly between f(x) and f(y) and also between f(z) and f(y).
This contradicts the assumption that f is injective. �

Proof of Lemma 2.3. Suppose by way of contradiction that f−1(S) is not dense. Then
there exists and interval I = (a, b) included in the complement of f−1(S). Then f(I) is
included in the complement of S. By the IVT, f(I) is an interval and since f is injective
f(I) is not a point. This contradicts the assumption that S is dense in R. �

#1333: Proposed by Steven R. Conrad, Math League.
Three circles are all externally tangent, and the lengths of their radii are 1, 4/9, and r. Find
all values of r (if any) for which a fourth circle can surround the first three so they are all
internally tangent to it.
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Solution below by Emmanuel College Math Club.
We invoke a theorem from geometry about this situation to establish an inequality involving

r. Solving for r will show that it must satisfy

0 < r <
1

63

(√
2032− 32

)

≈ 0.20758 . . . .

The MathWorld page for Soddy Circles cites a paper by Coxeter in the American Math-
ematical Monthly from 1968. This paper presents a proof about the situation stated in this
problem, which is in turn due to Frederick Soddy (Nature, 1936). The result is that, given
three mutually externally tangent circles and a fourth circle that is mutually tangent to the
other three, we have

2(ǫ21 + ǫ22 + ǫ23 + ǫ24) = (ǫ1 + ǫ2 + ǫ3 + ǫ4)
2

where ǫi = 1/ri is the curvature of circle i (and ri is its radius), and circle i = 4 is the fourth
one tangent to the other three. Solving for r4 via the quadratic formula shows that there are
two solutions, and they correspond to the fact that the fourth circle could be in the region
between the other three, or outside them (so that they’re internally tangent to it, as desired
here). The solution for r4 corresponding to that desired situation is:

r4 =
r1r2r3

r1r2 + r1r3 + r2r3 − 2
√

r1r2r3(r1 + r2 + r3)
.

In this problem, we have r1 = 1 and r2 = 4/9 and r3 = r. Substituting these values and
simplifying yields

r4 =
4r/9

4r
9
(r + 1)− 2

√

4r
9

(

13

9
+ r

)

.

Now, r4 > 0 exists if and only if the denominator is strictly positive:

4r

9
(r + 1) − 2

√

4r

9

(

13

9
+ r

)

> 0 ⇐⇒ 4r

9
(r + 1) > 2

√

4r

9

(

13

9
+ r

)

> 0.

With all terms positive, we may square both sides

16

81
(r + 1)2 +

8

9
r(r + 1) + r2 > 4

(

4r

9

(

13

9
+ r

))

and then simplify

r2 +
144

81
r +

16

81
>

16

9
r2 +

208

81
r.

Bringing all terms to one side and multiplying through by 81 yields

0 > 63r2 + 64r − 16.

Completing the square yields

0 >
1

63

(

(63r + 32)2 − 2032
)

,

which is true if and only if

0 < (63r + 32)2 < 2032 ⇐⇒ 63r + 32 <
√
2032 ⇐⇒ r <

√
2032− 32

63
.
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GRE Practice #1: Proposed by Steven Miller, Williams College
One of the greatest challenges students have with the math GRE subject test is that while

they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous
to guess). Consider the following old GRE problem (a discussion of the answer is included
after the solutions to earlier PME problems). If a > 0, what is the value of

∫

2a

0

∫

0

−
√

2ay−y2

√

x2 + y2dxdy.

(a) 16

9
a3 (b) 32

9
a3 (c) π

2
a2 (d) 8π

3
a2 (e) 2a4.

Solution: This problem allows me to introduce one of my favorite techniques. I like to
use the physics perspesctive and talk about dimensional analysis. Consider for example the
integral

∫

3

0
x3eaxdx. If we imagine x is in meters then a must have units of meters−1,

as the argument of the exponential must be unitless (to see this consider the Taylor series
eu = 1+u+u2/2!+u3/3!+ · · · ; if u had units then we would be adding quantities of different
dimensions). Thus as the integrand has units of meters4 the integral must have units of
meters4. We integrate out x, and thus the answer will be a polynomial in 1/a up to degree
4 (we have to remember that the bounds of integration of 0 and 3 have units of meters, but
we expect the leading term to be 1/a4).

Let’s apply this logic to our double integral

∫

2a

0

∫

0

−
√

2ay−y2

√

x2 + y2dxdy.

If we let x and y be in meters then the integrand has units of meters3. We must have a in
meters so that 2a has the same dimension as y. Thus we expect the answer to look like a
multiple of a3, which eliminates all but (a) and (b). Of course, similar to our analysis of the
exponential integral, we should be careful as perhaps a constant times a2 really has units of
meters3. To show that it really has to be one of these answers we just need to explore what
happens as a → ∞ and see that the integral grows like a2 and not a lower power (we will see
this shortly).

Even if we cannot simplify further, we have made great progress and have reduced it to
essentially a 50-50 chance. We can do better, however. Instead of trying to calculate the
integral exactly we can estimate. We just need to find a lower bound greater than (a) to
prove it is (b), or an upper bound smaller than (b) to prove it is (a). A simple bound is to

use
√

x2 + y2 ≤
√
x2+

√

y2 = |x|+y (we have to be careful and remember that x is negative

in the region of integration). Notice that |x| ≤
√

x2 + y2, so this would give a lower bound
and will prove it grows at least like a3.

Integrating x over the region gives

∫

2a

0

∫

0

−
√

2ay−y2
|x|dxdy =

∫

2a

0

2ay − y2

2
dy =

2a3

3
,
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while integrating y gives
∫

2a

0

∫

0

−
√

2ay−y2
ydxdy =

∫

2a

0

y
√

2ay − y2dy ≤
∫

2a

0

√
2ay3/2 =

2

5

√
2a(2a)5/2 =

4
√
2

5
a3.

Combining, we see the double integral is at most 4
√
2

5
+ 2

3
< 3; as this is less than 32/9, we

see that (b) is too large and the answer should be (a).
Depending on how much time we are willing to spend, we can either remove all but one

answer, or all but two. Notice we are able to do these relatively quickly, significantly faster
than doing the actual double integral. It’s important to remember that for the purposes of
this test it does not matter how you reach your answer, only what answer you reach. Thus if
you can eliminate four answers faster than finding one.... Also, we were fortunate here that
crude estimation sufficed to eliminate the last option; we didn’t have to evaluate the integral
too well.

E-mail address: sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams

College, Williamstown, MA 01267
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