
PI MU EPSILON: PROBLEMS AND SOLUTIONS: SPRING 2017

STEVEN J. MILLER (EDITOR)

1. Problems: Spring 2017

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.

We have made some changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue has
increased. Second, any school that submits correct solutions to at least two problems from
the current issue will be entered in a lottery to win a pizza party (value up to $100). Each
correct solution must have at least one undergraduate participating in solving the problem;
if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2 times in
the lottery. We are happy to report that three schools qualified: Andrews University, Cal
Poly Pomona, The Episcopal Academy, and North Central College; the randomly selected
one was North Central College: Congrats!

Figure 1. Pizza motivation; can you name the theorem that’s represented here?

#1327: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.

Date: April 11, 2017.
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The following is from the 1989 Green Chicken Math Competition between Middlebury
and Williams Colleges. The aerial view of a roller-coaster is a perfect circle. Show that there
are two diametrically opposed points on the roller-coaster having the same height.

#1328: Proposed by Mehtaab Sawhney, Commack High School, 6 Roanoke Ct., Commack,
NY 11725.

Let a sequence {an} satisfy

an+1 =
(2n− 1)an − 9(n− 2)an−1

n+ 1

for n ≥ 1 and set a1 = 1 and a2 = −1. Prove that an is integral if n ∈ Z
+. Hint:

Note the similarity of the recursion to those of Motzkin numbers, Delannoy numbers, and
super-Catalan numbers, though “combinatorially” it is different.

#1329: Proposed by Mehtaab Sawhney, Commack High School, 6 Roanoke Ct., Commack,
NY 11725.

There is a beautiful closed form expression for the number of ways to tile a regular hexagon
with edge length of n with diamonds of side length 1 and angles 60◦ and 120◦; it is

n−1
∏

i=0

(i)!(i+ 2n)!

[(i+ n)!]2
.

This formula is a special case of MacMahon’s formula which considers the more general prob-
lem of plane partitions; see the sequence A008793 in the Online Encyclopedia of Integer Se-
quences (OEIS) (https://oeis.org/A008793) or https://oeis.org/wiki/Plane_partitions
for further information. MacMahon’s formula is traditionally proved using a tricky generating
function argument, and even our special case is no simpler (see https://aquazorcarson.

wordpress.com/2011/02/25/ for an excellent presentation of such an argument). Prove
directly that this quantity is in fact an integer without resorting to the combinatorial inter-
pretation. Hint: Use Legendre’s Formula, which says the largest power of a prime p dividing
an integer m is

∑

∞

ℓ=1⌊m/pℓ⌋, where ⌊x⌋ is the greatest integer at most x.

#1330: Proposed by Ioana Mihǎilǎ, Cal Poly Pomona.
Let ABCD be a quadrilateral with opposite right angles A and C. Let BE and DG be

the perpendiculars dropped on AC from B and D respectively (see Figure 2). Show that
AE = GC.

#1331: Proposed by Greg Oman, University of Colorado, Colorado Springs.
A nonempty subset G of R is an additive subgroup of R provided for any x, y ∈ G, also

x − y ∈ G. Now suppose that f : R → R is both continuous and injective. Assume further
that f preserves additive subgroups of R; that is, if G is an additive subgroup of R, then
so is f [G] := {f(g) : g ∈ G}. Prove that there exists a real number a ∈ R such that
f(x) = ax for all x ∈ R. Note: it is well-known that a continuous f : R → R for which
f(x + y) = f(x) + f(y) for all x, y ∈ R is necessarily linear. The purpose of this exercise
is to show that if one strengthens “continuous” to “continuous and injective”, then one can
weaken the assumption of additivity to preservation of subgroups.
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Figure 2. Configuration for Problem #1326.

#1332: Proposed by Greg Oman, University of Colorado, Colorado Springs.
Find all fields F and F -vector spaces V with the property that any two bases for V

have nonempty intersection. Note: the text below is meant to be a brief introduction to the
concepts of fields, vector spaces and bases; for more information see any linear algebra book,
or search on Google or Wikipedia. One reason we have chosen to include this problem is to
encourage readers who have not seen these concepts to explore them.

The operations of addition and multiplication on the set R of real numbers enjoy many
familiar properties. For example, both operations are commutative and associative, and
multiplication distributes over addition. A mathematical structure with operations (denoted
by + and ·) which enjoy similar properties is called a field. One can add two ordered n-
tuples (x1, . . . , xn) and (y1, . . . , yn) of real numbers in a natural way by defining (x1, . . . , xn)+
(y1, . . . , yn) := (x1 + y1, . . . , xn + yn). We can “multiply” a real number r by (x1, . . . , xn) to
get another ordered n-tuple of real numbers by defining r·(x1, . . . , xn) := (rx1, . . . , rxn). One
can verify that again, many familiar algebraic properties are enjoyed by these operations.
For instance, + is commutative and · distributes over addition. A mathematical structure
with operations + and a scalar multiplication · over a field F which enjoy similar properties
is called a vector space over F . Consider now the vector space R

2 of ordered pairs of
real numbers with operations defined above. Observe that if (a, b) ∈ R

2 is arbitrary, then
(a, b) = a(1, 0) + b(0, 1). Thus every ordered pair of real numbers can be expressed as a
linear combination of (1, 0) and (0, 1). More generally, if V is a vector space over a field F ,
then a subset S of V is said to span V if every element of V is a finite linear combination
of elements of S; one also says that S is a spanning subset of V . A spanning subset S of V
with no proper spanning subsets is called a basis of V .

#1333: Proposed by Steven R. Conrad, Math League.
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Three circles are all externally tangent, and the lengths of their radii are 1, 4/9 and r.
Find all values of r (if any) for which a fourth circle can surround the first three so they are
all internally tangent to it.

2. Solutions

#1312: Proposed by Steven J. Miller, Department of Mathematics and Statistics, Williams
College, and Stand Wagon, Department of Mathematics, Statistics, and Computer Science,
Macalester College.

Larry Bird and Magic Johnson are playing a game of basketball; they alternate shooting
with Bird going first, and the first to make a basket wins. Assume Bird always makes a
shot with probability pB and Magic with probability pM , where pB and pM are independent
uniform random variables. (This means the probability each of them is in [a, b] ⊂ [0, 1] is
b− a, and knowledge of the value of pB gives no information on the value of pM .)

(1) What is the probability Bird wins the game?
(2) What is the probability that, when they play, Bird has as good or greater chance of

winning than Magic?

Solution below by Nate Vogel and David Schmitz, North Central College Math
Department.

To find the probability that Bird wins the game, we first need to find the probability that
Bird wins on his nth shot. So, for any n shot attempt, the probability that Bird wins on
shot n, denoted here Bw, is

Pn(Bw) = PB ((1− PB) (1− PM))n−1 .

Bird’s chance of winning the game is

P (Bw) =
∞
∑

n=1

Pn(Bw) =
∞
∑

n=1

PB ((1− PB) (1− PM))n−1 .

Notice that this infinite sum takes the form of a geometric series, with

r = (1− PB) (1− PM) ,

a = PB.

We can be assured that r is between 0 and 1, as it is a product of probabilities.
The sum of a geometric series takes the form of

a

1− r
=

PB

1− (1− PB)(1− PM)
= P (Bw).

This is Bird’s chance of winning in general terms.

Next, we compute the exact value of Bird’s chance of winning by integrating this expression
over the square of [0, 1]× [0, 1]. Letting PM = y and PB = x, we set up our desired integral
as follows:

∫ 1

0

∫ 1

0

x

1− (1− x)(1− y)
dydx.
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To simplify our process, let us first solve the inner integral. We use u-substitution, letting
u = 1− (1− x)(1− y), and du = (1− x)dy.

∫ 1

0

x

1− (1− x)(1 − y)
dy =

∫ 1

x

x

(1− x)(u)
du

=
x

1− x
ln u

∣

∣

∣

∣

1

x

= 0−
x ln x

1− x

= −
x ln x

1 − x
.

Now, we want to simplify our outer integral into a more workable difference of integrals,
where we let z = 1− x.

−

∫ 1

0

x ln x

1− x
dx =

∫ 0

1

(1− z) ln(1− z)

z
dz

=

∫ 1

0

(z − 1) ln(1− z)

z
dz

=

∫ 1

0

z ln(1− z)

z
−

ln(1− z)

z
dz

=

∫ 1

0

ln(1− z)dz −

∫ 1

0

ln(1− z)

z
dz.

Solving for our first integral in our integral difference by using w-substitution, where we
have let w = 1− z, dw = −dz,

∫ 1

0

ln(1− z)dz = −

∫ 0

1

lnwdw

=

∫ 1

0

lnwdw

= lim
t→0+

∫ 1

t

lnwdw

= lim
t→0+

(

w lnw − w

∣

∣

∣

∣

1

t

)

= lim
t→0+

(−1 − (t ln t− t))

= −1

Now, solving for the second integral in our integral difference,
∫ 1

0

ln(1− z)

z
dz = −Li2(1)

= −

(

−π2

6

)

,
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where we have applied one of the integral equivalencies of the dilogarithmic function (see Wol-
fram MathWorld’s article for reference - http://mathworld.wolfram.com/Dilogarithm.html).

Finally, subtracting these two results gets us Bird’s probability of winning,

−1−

(

−
π2

6

)

=
π2

6
− 1.

For the second part, let us denote in general terms the probability that Bird has as good
or greater a chance of winning than Magic as

P (P (Bw) ≥ P (Mw)) = P (P (Bw)− P (Mw) ≥ 0).

Notice also that

P (Mw) =
PM(1− PB)

1− (1− PB)(1− PM)
,

where the same method for finding Bird’s chance of winning the game can be used to find
Magic’s. Again, letting PM = y and PB = x, we can simplify our probability

P (P (Bw)− P (Mw) ≥ 0) = P (PB − PM(1− PB) ≥ 0)

= P (x− y(1− x) ≥ 0)

= P (x− y + xy ≥ 0)

= P (y ≤ x+ xy)

= P (y − xy ≤ x)

= P

(

y ≤
x

1− x

)

.

Now we can use a double integral to find the area under the curve y = x
1−x

(see Figure 3).

Figure 3. Area under y = x/(1− x).
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We can split the area that we are trying to find into two parts. The right section is a
rectangle of area 1

2
. The remaining area to be calculated can be found using the following

integral:
∫ 1

2

0

∫ x

1−x

0

dydx,

where our bounds are found using our simplified probability inequality. To solve this integral,
we use u-substitution, letting u = 1 − x, du = −dx, and x = 1 − u. Substituting these in
and simplifying, we have

∫ 1
2

0

u− 1

u
du =

∫ 1
2

0

1−
1

u
du

= u− ln(u)

∣

∣

∣

∣

1
2

1

= ln(2)−
1

2

Finally, to find the total area, and our desired probability, we simply add 1
2
to our answer,

which gives us ln(2) as our final answer.

#1318: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
The following is from the 2009 Green Chicken Math Competition between Middlebury

and Williams Colleges. Evaluate
∞
∑

n=1

sin(2π/3n) sin(π/3n).

Solution below by Robert C. Gebhardt, Chester, NJ. Also solved by the Episcopal
Academy Problem Solvers (Shreya Dalal, Laura Lewis, Stephana Lim, Ab-
hay Malik, Sameer Saxena, Jake Viscusi (students) and Tom Goebeler), The
Episcopal Academy, Newtown Square, PA, John Kampmeyer, Elizabethtown
College.

As

sinα sin β =
cos(α− β)− cos(α + β)

2
,

we have

sin
2π

3n
sin

π

3n
=

1

2

(

cos
π

3n
− cos

3π

3n

)

.

Thus our sum equals
∞
∑

n=1

1

2

(

cos
π

3n
− cos

3π

3n

)

=
1

2

(

cos
π

3
− cosπ

)

+
1

2

(

cos
π

9
− cos

π

3

)

+
1

2

(

cos
π

27
− cos

π

9

)

+
1

2

(

cos
π

81
− cos

π

27

)

+ · · · .
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Notice that pairs of terms cancel, leaving only

1

2
(− cosπ) +

1

2
cos 0 = 1.

#1319: Proposed by Mehtaab Sawhney, Commack High School, 6 Roanoke Ct., Commack,
NY 11725.

A classic linear algebra problem is to calculate the determinant of the symmetric Pascal

Matrix, P , which is the n × n matrix whose (i, j)th entry is Pi,j =
(

i+j

j

)

. Notice that the

Pascal Matrix satisfies Pi,j = Pi−1,j + Pi,j−1 for i and j greater than 1, which is equivalent
to Pascal’s Identity. Building on this identity, we can consider the more general family of
matrices A(n) such that A(n) is an n× n matrix whose entries satisfy

A(n)i,j =

{

1 i = 1 and/or j = 1
A(n)i−1,j + A(n)i,j−1 + kA(n)i−1,j−1 otherwise;

notice that the symmetric Pascal Matrix is simply the case k = 0. Determine det(A(n)) as
a function of k and n.
Hint: It is known that the Pascal Matrix has an LU factorization as a consequence of Van-
dermonde’s Identity. One approach (although not the easiest) for this problem is to show that
A(n) has an LU factorization and then use this factorization to compute the determinant.

Solution below by Steve Edwards, Kennesaw State University, Marietta, GA.
Since the entries of the matrix are independent of n, we will write ai,j for A(n)i,j. We first

show that for m ≥ 2,

m−1
∑

i=0

(−1)i
(

m− 1

i

)

am−i,n =

(

n− 1

m− 1

)

(k + 1)m−1. (1)

Note that a2,n = (n− 1)k + n for all positive integers n. For m = 2, we have

1
∑

i=0

(−1)i
(

1

i

)

a2−i,n = a2,n−a1,n = [(n−1)k+n]−1 = (n−1)(k+1) =

(

n− 1

1

)

(k+1)1.

We proceed by strong induction on m, with (1) as our inductive hypothesis. Then for n = 1,
the sum becomes an alternating sum of a row from Pascal’s triangle:

m
∑

i=0

(−1)i
(

m

i

)

am+1−i,1 =
m
∑

i=0

(−1)i
(

m

i

)

= 0 =

(

0

m

)

(k + 1)m.

We next proceed by induction on n, i.e., assume that for some positive integer n,

m
∑

i=0

(−1)i
(

m

i

)

am+1−i,n =

(

n− 1

m

)

(k + 1)m.
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Then
m
∑

i=0

(−1)i
(

m

i

)

am+1−i,n+1 (2)

=

[

m−1
∑

i=0

(−1)i
(

m

i

)

am+1−i,n+1

]

+ (−1)ma1,n+1

=

m−1
∑

i=0

(−1)i
(

m

i

)

am−i,n+1 +

m−1
∑

i=0

(−1)i
(

m

i

)

am+1−i,n + k

m−1
∑

i=0

(−1)i
(

m

i

)

am−i,n + (−1)ma1,n

=

m−1
∑

i=0

(−1)i
(

m

i

)

(am−i,n+1 + kam−i,n) +

m
∑

i=0

(−1)i
(

m

i

)

am+1−i,n.

Note next that a1,n =
(

1
1

)

a1,n = 1 =
(

n−1
0

)

, and a2,n −
(

2
1

)

a1,n = (
(

1
0

)

a2,n −
(

1
1

)

a1,n) − a1,n =
(

n−1
1

)

(k+1)−
(

n−1
0

)

. It follows more generally from Pascal’s Identity, the inductive hypothesis
on m, and induction on n that

m−1
∑

i=0

(−1)i
(

m

i

)

am−i,n =
m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

(k + 1)m−1−i.

Thus
m−1
∑

i=0

(−1)i
(

m

i

)

(am−i,n+1 + kam−i,n)

=
m−1
∑

i=0

(−1)i
(

n

m− 1− i

)

(k + 1)m−1−i + k
m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

(k + 1)m−1−i.

Now let b = k + 1, which makes this last expression

m−1
∑

i=0

(−1)i
(

n

m− 1− i

)

bm−1−i + (b− 1)

m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

bm−1−i

=
m−1
∑

i=0

(−1)i
(

n

m− 1− i

)

bm−1−i +
m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

bm−i −
m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

bm−1−i.

Now use Pascal’s Identity on the first and third sum to get

m−2
∑

i=0

(−1)i
(

n− 1

m− 2− i

)

bm−1−i +

m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

bm−i.

Re-index the first sum to get

m−1
∑

i=1

(−1)i+1

(

n− 1

m− 1− i

)

bm−i+
m−1
∑

i=0

(−1)i
(

n− 1

m− 1− i

)

bm−i =

(

n− 1

m− 1

)

bm =

(

n− 1

m− 1

)

(k+1)m.

Finally, this and the inductive hypothesis on n make (2) equal to
(

n− 1

m− 1

)

(k + 1)m +

(

n− 1

m

)

(k + 1)m =

(

n

m

)

(k + 1)m.
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This completes the inductions. Because of (1), when m = n,

n−1
∑

i=0

(−1)i
(

n− 1

i

)

an−i,n =

(

n− 1

n− 1

)

(k + 1)n−1 = (k + 1)n−1,

and for m > n,

m−1
∑

i=0

(−1)i
(

m− 1

i

)

am−i,n =

(

n− 1

m− 1

)

(k + 1)m−1 = 0.

Now let Rj represent the jth row of A(n). Then if Rj is replaced by

j−1
∑

i=0

(−1)i
(

j − 1

i

)

Rj−i

in the order j = n, n − 1, . . . , 2, the result is an upper triangular matrix with diagonal
entries 1, (k + 1), (k + 1)2, . . . , (k + 1)n−1. This shows that det(A(n)) = (k + 1)1+2+···+(n−1),

or det(A(n)) = (k + 1)
n(n−1)

2 . Finally, we note that the Pascal Matrix is the case k = 0, so
this shows that the determinant of the Pascal Matrix is 1.

We also include the solution by the proposer. Let |M | denote the determinant of a matrix
M . Define a new matrix B(n) by taking the n− 1st column of A(n) and subtracting it from
the nth column of A(n), n− 2nd column of A(n) and subtracting from the n− 1st column
of A(n), and so on until the taking the 1st column of A(n) and subtract it from the 2nd

column of A(n). Since elementary row operation preserve the determinant it follows that
|A(n)| = |B(n)|. Furthermore it also follows that

B(n)i,j =

{

A(n)i,j j = 1
A(n)i,j − A(n)i−1,j otherwise,

and now we define a new matrix C(n). Create C(n) by taking the n− 1st row of B(n) and
subtracting it from the nth row of B(n), taking n− 2nd row and subtracting it from the
n− 1st row , and so on until taking the 1st row of C(n) and subtract in from the 2nd row of
C(n). As before it follows that |B(n)| = |C(n)| and it follows that

C(n)i,j =















A(n)i,j i = 1 and j = 1
A(n)i,j −A(n)i,j−1 i = 1 and j 6= 1
A(n)i,j −A(n)i−1,j j = 1 and i 6= 1
A(n)i,j −A(n)i−1,j − A(n)i−1,j + A(n)i−1,j−1 otherwise.

Using the conditions of the original problem it is possible to simplify C(n). Notice that
A(n)i,j−A(n)i−1,j−A(n)i−1,j+A(n)i−1,j−1 = kA(n)i−1,j−1+A(n)i−1,j−1 = (k+1)A(n)i−1,j−1

for i 6= 1 and j 6= 1 and therefore it follows that

C(n)i,j =















1 i = 1 and j = 1
0 i = 1 and j 6= 1
0 j = 1 and i 6= 1
(k + 1)A(n)i−1,j−1 otherwise,

and expanding along the first row it trivially follows that |C(n)| = |B(n)| = |A(n)| =
(k+1)n−1|A(n−1)|. (Separate out a factor of k+1 from all columns except the first to obtain
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the last equality). Since |A(1)| = 1, it follows from trivial induction that |A(n)| = (k+1)
n(n−1)

2

and the result follows.

#1323: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.
The following is from the 1997 Green Chicken Math Competition between Middlebury

and Williams Colleges. Does any row of Pascal’s triangle have three consecutive entries that
are in the ratio 1:2:3?

Solution below by Mitchell Eithun, Ripon College. Also solved by Robert C. Geb-
hardt, Chester, NJ, Hongwei Chen, Christopher Newport University, VA,
Jeremiah Bartz, University of North Dakota, ND, Ioana Mihaila, Cal Poly
Pomona, Ashland University Undergraduate Problem Solving Group, Ashland,
OH, Tommy Goebeler and Sameer Saxena, The Episcopal Academy, New-
town Square, PA, The Pi Mu Epsilon chapter at Andrews University, Berrien
Springs, MI.

Recall that the three consecutive entries in row n of Pascal’s Triangle starting at column
p are the binomial coefficients

(

n

p

)

and
(

n

p+1

)

and
(

n

p+2

)

. If
(

n

p

)

and
(

n

p+1

)

are in a 1:2 ratio,
then

1

2
=

(

n

p

)

(

n

p+1

) =

n!

p!(n− p)!

n!

(p+ 1)!(n− p− 1)!

=
p+ 1

n− p
.

Using cross multiplication, 2(p+ 1) = n− p or n = 3p+ 2. Similarly, if
(

n

p+1

)

and
(

n

p+2

)

are

in a 2:3 ratio, then

2

3
=

(

n

p+1

)

(

n

p+2

) =

n!

(p+ 1)!(n− p− 1)!

n!

(p+ 2)!(n− p− 2)!

=
p+ 2

n− p− 1
.

Hence, 3(p+ 2) = 2(n− p− 1). Using n = 3p+ 2, we have

3(p+ 2) = 2((3p+ 2)− p− 1)

3p+ 6 = 4p+ 2

p = 4.

We find n = 3(4) + 2 = 14. Therefore, in the 14th row of Pacsal’s triangle, entries 4, 5 and
6 form a 1:2:3 ratio (the entries are 1001, 2002 and 3003).

#1325: Proposed by Matthew McMullen, Otterbein U., Westerville, OH.
An equable triangle is a triangle whose area is numerically equal to its perimeter. Find

infinitely many (or, better yet, all) right, equable triangles with rational side lengths.
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Solution below by Satyanand Singh, New York City College of Technology of
the CUNY, Brooklyn, NY. Also solved by Dionne Bailey, Elsie Campbell, and
Charles Diminnie, Angelo State University, San Angelo, TX, Ioana Mihaila,
Cal Poly Pomona, Mike Lucia, North Central College, Naperville, Illinois, The
Pi Mu Epsilon chapter at Andrews University, Berrien Springs, MI, Ash-
land University Undergraduate Problem Solving Group, Ashland, OH, Hope
Miedema, Kaitlyn McGrade and Christopher Orlando, Manhattan College,
Riverdale, NY.

Pythagorean triples (a, b, c) for right triangles satisfy the relation a2+b2 = c2, where a and
b are the side lengths and c is the hypotenuse’s. It’s a standard result that all Pythagorean
triples are of the form a = t(m2 − n2), b = t(2mn) and c = t(m2 + n2) where m > n, n and
t are natural numbers, m and n are coprime and not both odd and up to congruence a and
b the triangle’s legs can switch roles. If we consider the rational triple (s/t, u/v, l/k) such
that (s/t)2 + (u/v)2 = (l/k)2 it then follows that (svk)2 + (utk)2 = (ltv)2 which shows that
all rational solutions are based on the pythagorean triples.

For an equable right triangle with sides (a, b, c), we set the perimeter P equal to its
area A. That is a + b + c = ab/2. Now substituting the standard result for pythagorean
triples stated above for a, b and c and letting t run over the positive rationals we get that
t(m2 − n2) + t(2mn) + t(m2 + n2) = t2(mn)(m2 − n2) or t = 2/n(m− n). We now have

all possible equable triangles with sides a = 2(m+n)
n

, b = 4m
m−n

and c = 2(m2+n2)
n(m−n)

with this

expression for t.
Addendum. In the special case for equable triangles with integral sides, there are exactly

two non congruent triangles. Their triples are (5, 12, 13) and (6, 8, 10). This readily follows
if we observe that for t to be a natural number then n must divide 2, which gives us that
n = 2 and m = 3 or n = 1, and m = 2 and the the two triples above respectively.

Addendum. Additional remark from Dionne Bailey, Elsie Campbell, and Charles Diminnie:
A related problem is to find all integer-sided triangles whose area A and perimeter P satisfy
A = mP for some fixed positive integer m. Some characterizations of such triangles may be
found in the following sources.

• L. P. Markov, Pythagorean Triples and the Problem A = mP for Triangles, Mathe-
matics Magazine 79 (2006), 114–121.

• T Leong, D. Bailey, E. Campbell, C. Diminnie, and P. Swets, Another Approach to
Solving A = mP for Triangles, Mathematics Magazine 80 (2007), 363–368.

E-mail address : sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams

College, Williamstown, MA 01267
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