
PI MU EPSILON: PROBLEMS AND SOLUTIONS: SPRING 2018

STEVEN J. MILLER (EDITOR)

1. Problems: Spring 2018

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue
has increased. Second, any school that submits correct solutions to at least two problems
from the current issue will be entered in a lottery to win a pizza party (value up to $100).
Each correct solution must have at least one undergraduate participating in solving the
problem; if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2
times in the lottery. Solutions for problems in the Spring Issue must be received by October
31, while solutions for the Fall Issue must arrive by March 31. The randomly chosen winner
for this issue is the Armstrong Problem Solvers, Armstrong Campus of Georgia Southern
University. Congratulations to them and all the schools that competed (we had a record
number hit the threshold this issue).

Figure 1. Pizza motivation; can you name the theorem that’s represented here?

Date: March 29, 2018.
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#1343: Proposed by Ralph Morrison, Williams College.

The following is from the 2016 Green Chicken Math Competition between Middlebury and
Williams Colleges. (a) If we expand and collect like terms in (x+ y)2, there are three terms
(since (x+ y)2 = x2 + 2xy + y2). After you expand (w + x+ y + z)38 and collect like terms,
how many terms are there? (b) Greenie picks (uniformly at random) one of the terms you
counted up in part (a), deletes the integer coefficient, and plugs in w = 2, x = 3, y = 5, and
z = 7. What is the probability that the resulting number is divisible by 2016?

#1344: Proposed by Steven J. Miller and Ralph Morrison, Williams College.

The following is from the 2016 Green Chicken Math Competition between Middlebury and
Williams Colleges, though it was probably inspired by a problem in the literature. In order
to prove a proposition on Diophantine equations, Greenie was planning to cite Fermat’s
Last Theorem, which says that there are no integer solutions to xn + yn = zn where n ≥ 3
and xyz 6= 0. However, as she is just an undergraduate chicken, she has not taken enough
classes to understand the proof. She doesn’t want to use a result she doesn’t understand.
Fortunately, she only needs a weaker version of Fermat’s Last Theorem: There are no positive
integer solutions x, y, z, n to xn + yn = zn where n ≥ z and xyz 6= 0. Please prove it, so that
Greenie can complete her paper:

#1345: Northwest Missouri State University, Problem Solving Group, Maryville, MO

There is no general method for finding the closed-form of a convergent series. Techniques
can vary from problem to problem; the following problem can be solved using methods from
Calculus I and II: Find a closed form for

x+
∞∑

n=1

(−1)n−1(2n− 3)(2n− 5) · · ·5 · 3 · 1

2nn!(2n+ 1)
x2n+1.

Note: one often writes (2n− 1)!! for the double factorial of 2n− 1, i.e., the product of every

other number from 2n− 1 down to 1.

#1346: Proposed by Hongwei Chen, Department of Mathematics, Christopher Newport

University.

Let Fn be the nth Fibonacci number with F1 = F2 = 1, and Fn = Fn−1 + Fn−2 for n > 2.
Define

an = 1Fn2Fn−1 · · · (n− 1)F2nF1 .

Find a constant A such that, for sufficiently large n, an ∼ AFn+1 .

#1347: Proposed by Zhiqi Li on behalf of Math 377 Spring 2017, Williams College.

The following is a standard problem (though often concrete numbers are given), ending in a
more open question that likely is in the literature but if so is not as well known. Let f(n) be
the smallest number of points on a unit circle such that no matter where those f(n) points
are chosen, at least n of them will be on a common closed semi-circle. Find f(n). Extra
credit: what would the corresponding values be on a sphere?

#1348: Proposed by Matthew McMullen, Otterbein University.
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An equable triangle is one whose area and perimeter evaluate to the same number. Find the
real number a such that there exists exactly one equable triangle with two sides of length a.
(Bonus: Classify all pairs of real numbers (a, b) with a ≥ b such that there exists exactly
one equable triangle with one side of length a and another side of length b.)

#1349: Proposed by Kenny Davenport and Allen Pierce.

In #978 (volume 11 (2000), number 3), Robert Hess asked for a 4× 4 array of integers such
that the four digit numbers which are the rows and the four digit numbers which are the
columns are all perfect squares and the digit 0 is never used; the solution is

2 1 1 6
1 2 2 5
1 2 9 6
6 5 6 1

(the solution is unique). Find at least 5 solutions to the corresponding problem for a 5 × 5
array where again the digit 0 cannot be used. Bonus: if additionally the matrix is symmetric,
how many solutions are there?

GRE Practice #2: Proposed by Steven Miller, Williams College

One of the greatest challenges students have with the math GRE subject test is that while
they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous to
guess). Consider the following (a discussion of the answer is included after the solutions to
earlier PME problems). Daneel is able to paint a house in two days, while Hari needs three
days. If they work together how many days will it take? (a) 2/3 (b) 3/4 (c) 5/6 (d) 6/5 (e)
3/2.

2. Solutions

Note: After the Fall 2017 issue went to print, correct solutions were sent to several problems:
#1330 by Lucas Stefanic, Rochester Institute of Technology, and #1333 by Ioannis D. Sfikas,
National and Kapodistrian University of Athens.

#1335: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.

The following is from the 1993 Green Chicken Math Competition between Middlebury and
Williams Colleges. At State University 7 students registered for American history, 8 students
for British history, and 9 students for Chinese history. No student is allowed to take more
than one history course at a time. Whenever two students from different classes get together,
they decide to drop their current history courses and add the third. Otherwise there are no
adds or drops. Is it possible for all students to end up in the same history course?

Solution below by Lucas Stefanic, Rochester Institute of Technology. Also solved

by the Armstrong Problem Solvers, Armstrong Campus of Georgia Southern

University, and Ashley Bishop, North Central College.

It is not possible. Let (a1, b1, c1) be an ordered triple such that there are a1 students in
American history, b1 in British history, and c1 in Chinese history. Suppose two students
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from different classes get together and the triple (a2, b2, c2) represents the new numbers of
students in the classes.

Case 1.

Students from American and British history get together:

(a2, b2, c2) = (a1 − 1, b1 − 1, c1 + 2).

Students from American and Chinese history get together:

(a2, b2, c2) = (a1 − 1, b1 + 2, c1 − 1).

Students from British and Chinese history get together:

(a2, b2, c2) = (a1 + 2, b1 − 1, c1 − 1).

In every case, the congruence a2 − b2 ≡ a1 − b1 (mod 3) holds. Thus if students continue
to get together, then in the sequence of triples (an, bn, cn) that follow, we will always have
an− bn ≡ 7−8 ≡ 2 (mod 3). But if all 24 students could end up in the same history course,
then we would have an − bn ≡ 0 (mod 3); contradiction.

#1336: Proposed by Pete Schumer, Middlebury College, Middlebury, VT 05753.

The following is from the 1999 Green Chicken Math Competition between Middlebury and
Williams Colleges. An integer is powerful if each of its prime factors occurs to the second
power or more. Prove or disprove: There are an infinite number of pairs of consecutive
powerful numbers.

Solution below by Zachary Morgan, Eastern Kentucky University. Also solved by

Lucas Stefanic, Rochester Institute of Technology.

Using induction, we show given any pair of consecutive powerful numbers we can always
find another, larger pair. For the base case, consider the powerful pair 8 = 23 and 9 = 32.

Now, suppose n and n + 1 is a pair of consecutive powerful numbers and consider the
consecutive numbers 4n2 + 4n and 4n2 + 4n+ 1. Note

4n2 + 4n = 4(n2 + n) = 22(n2 + n) = 22n(n + 1)

is powerful if n and n+ 1 are. Similarly

4n2 + 4n+ 1 = (2n+ 1)2

is powerful since every prime factor of 2n + 1 is raised to at least the second power once it
is squared.

Since n and n+1 are consecutive powerful numbers by the induction hypothesis, 4n2+4n
and 4n2 + 4n+ 1 is a larger pair of consecutive powerful numbers, completing the proof.

#1337: Proposed by Steven J. Miller, Williams College, Williamstown, MA.

A graph G is a collection of vertices V and edges E connecting pairs of vertices. Consider the
following graph. The vertices are the integers {2, 3, 4, . . . , 2017}. Two vertices are connected
by an edge if they share a divisor greater than 1; thus 30 and 1593 are connected by an edge
as 3 divides each, but 30 and 49 are not. The coloring number of a graph is the smallest
number of colors needed so that each vertex is colored and if two vertices are connected by
an edge, then those two vertices are not colored the same. Prove the coloring number is at
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least 10. What is the actual value? This problem was first published in the Newsletter of the

European Mathematical Society.

Solution below by the Armstrong Problem Solvers, Armstrong Campus of Georgia

Southern University.

The coloring number of this graph is 1008. To see this, notice that exactly half of the 2016
vertices are even integers, which all share a common divisor of 2. Thus, every pair of even
integers is connected by an edge, so no two even integers can have the same color, and the
coloring number of the graph is at least 1008. (In the language of graph theory, the graph
contains the complete graph K1008 as a subgraph.) A proper coloring with exactly 1008
different colors is easily obtained by coloring each even integer and its successor the same
color. Since any two consecutive integers have a difference of 1, they must be relatively
prime, and cannot share any divisors greater than one.

#1340: Communicated by Steven J. Miller, Williams College

Zeckendorf proved that if we define the Fibonacci numbers by F1 = 1, F2 = 2 and Fn+2 =
Fn+1 + Fn then every integer can be written uniquely as a sum of non-adjacent Fibonacci
numbers. We call this the Zeckendorf decomposition; thus 2018 = 1597 + 377 + 34 + 8 + 2.
Prove this claim, and further show that if we write any N as a sum of Fibonacci numbers,
no decomposition has fewer summands than the Zeckendorf decomposition.

Solution below by Raymond Maresca, Manhattan College.

We first show every natural number has a Zeckendorf decomposition. First, if any natural
number is a Fibonacci number, then it is its own Zeckendorf decomposition. So we take
the first natural number that is not a Fibonacci number and show that it has a Zeckendorf
decomposition. That is, 4 = 3+ 1. Now we assume for all k ≤ n, where k, n ∈ N, that k has
a Zeckendorf decomposition. Then the natural number n + 1 is either a Fibonacci number
or it is not. If it is a Fibonacci number we are done, so we assume it is not. Then there
exist two Fibonacci numbers Fj, Fj+1 such that Fj < n+ 1 < Fj+1 for some 1 ≤ j ∈ N. Let
the natural number z = (n + 1) − Fj . This allows us to conclude that z + Fj = n + 1 and
therefore that z < n+1 because Fj > 0 for all j. Since z is a natural number less than n+1,
the inductive hypothesis allows us to conclude that z has a Zeckendorf decomposition which
we denote by Zeck(z). Notice n + 1 < Fj+1, allowing us to conclude that z + Fj < Fj+1.
Since Fj+1 is a Fibonacci number, we have z + Fj < Fj + Fj−1, or z < Fj−1. This allows us
to conclude that Fj−1 is not a summand of Zeck(z) and thus Fj + Zeck(z), is a Zeckendorf
decomposition of n + 1. Therefore through induction, we have that every natural number
can be written as a sum of non-adjacent Fibonacci numbers.

We now show uniqueness. We first establish the following: Consider a finite sum of non-
adjacent Fibonacci numbers (i.e., a Zeckendorf decomposition) of some integer N . If Fj is
the largest summand in that decomposition, then N < Fj+1, the next adjacent Fibonacci
number to Fj .

Proof: We will prove this by induction on the length of the Zeckendorf decomposition. By
definition of Fibonacci numbers, it is clear any Fibonacci number is less than its successor,
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our base case for induction. Now for all Zeckendorf decompositions, Z1, of length k ∈ N we
assume Fk < Fk+1 where Fk is the largest summand of Z1. Notice, Z1 = Z2+Fk where Z2 is
a Zeckendorf decomposition consisting of the previous k− 1 summands of Z1. Now consider
a Zeckendorf decomposition Z of length k + 1. Then Z = Z1 + Fi where Fi is the largest
summand of Z. Since the decomposition is Zeckendorf, Fk and Fi are not adjacent. Then
Fk+1 ≤ Fi−1. We have

Z = Z1 + Fi

= (Z2 + Fk) + Fi

< Fk+1 + Fi (Inductive Hypothesis)

≤ Fi−1 + Fi

= Fi+1

Therefore, through induction, we have for any Zeckendorf decomposition of an integer N ,
if Fj is the largest summand in that decomposition, then N < Fj+1, the next adjacent
Fibonacci number to Fj . �

We now prove that the Zeckendorf decomposition of a natural number is unique. Sup-
pose for any N ∈ N we have two Zeckendorf decompositions D1 = Fi1 + · · · + Fim and
D2 = Fj1 + · · ·+ Fjn such that D1 = N = D2. For a contradiction, suppose that the decom-
positions are not identical. Moreover, suppose that the summands of D1 and D2 are written
in size order, from largest to smallest, that is Fj1 > Fj2 and so on. Since the decompositions
are not identical, a pair of unequal summands must occur before the shorter decomposition
terminates. Say the first unequal pair occurs k ∈ [1,min{n,m}] terms into the decomposi-
tions, that is Fik 6= Fjk for some k ∈ N. Without loss of generality, suppose Fik < Fjk . Since
D1 is a Zeckendorf decomposition, so is Fik + Fik+1

+ · · ·+ Fim and from the above lemma
we conclude Fik+1 > Fik +Fik+1

+ · · ·+Fim . Since we assumed that Fik < Fjk , we know that
Fik + Fik+1

+ · · ·+ Fim < Fik+1 ≤ Fjk . Thus Fik + Fik+1
+ · · · + Fim < Fjk . Now, since the

first k − 1 pairs of summands are assumed to be equal, we have

D1 = Fi1 + Fi2 + · · ·+ Fik + · · ·+ Fim

< Fi1 + Fi2 + · · ·+ Fik−1
+ Fjk (Fik + Fik+1

+ · · ·+ Fim < Fjk)

= Fj1 + Fj2 + · · ·+ Fjk−1
+ Fjk (First k − 1 summands equal)

< Fj1 + Fj2 + · · ·+ Fjk + Fjk+1
+ · · ·+ Fjn (Adding remaining summands of D2 )

= D2

Notice, the generality of the above result is not lost if D1 and D2 have different numbers of
summands. Thus D1 < D2, contradicting the claim that the two decompositions are equal.
Therefore the Zeckendorf decomposition of an integer is unique.

All that remains is to show that no decomposition using only Fibonacci numbers has fewer
summands than the Zeckendorf one. We use the proof of the proposer, as it uses a great
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mathematical concept, that of a monovariant. A monovariant is a quantity that changes in
at most one direction.

Given a decomposition ofm into a sum of Fibonacci numbers, consider the sum of indices of
terms in the decomposition (start F1 = 1, F2 = 2). If you ever have two adjacent summands
you do not increase the index sum by combining (and decrease it once the smallest summand
is at least F2). If you have F1 twice use F2. If you have F2 twice use F1 and F3. In general,
if you have Fk twice use

2Fk = Fk−2 + Fk−1 + Fk = Fk−2 + Fk−1,

which has decreased the index sum for k ≥ 3 and you now have a larger Fibonacci summand.
You can only do this a bounded number of times or you’ll end up with Fibonacci number
larger than the largest Fibonacci number less than m, so when you terminate you cannot
have any repeats or adjacencies, and thus must be a legal Zeckendorf decomposition! As
you have not increased the number of summands at any step, no decomposition can have
fewer summands than the Zeckendorf decomposition. (Alternatively, if you were not at a
Zeckendordf decomposition you could either split a doubled index or combine two adjacent
ones, lowering the index sum, and keeping the number of terms either the same or decreasing
by 1.)

#1341: Proposed by Matthew Davis, Williams College

Consider an infinite one-dimensional board, where we may place checkers at any integer. We
initialize the game by placing checkers at all the positive squares, and all their negatives;
thus there are checkers only at positions ±1,±4,±9, and so on. As the game evolves, we
may have multiple checkers at the same position (similar to how one may stack checkers in
a game to make a king). At each step, you can perform one of several moves.

• You can either add or remove any finite number of checkers.
• Given integers a, k with k > 1, you may add a checker at each position akn (where n
ranges over the non-negative integers).

• If there are integers a, k with k > 1 such that for all n there is always at least
one checker at position akn, then you may remove one checker from each of these
positions.

Is it possible to move every checker inward one space in a finite number of moves? In
other words, can we reach the state where there are two checkers at 0, and then one each at
±3,±8,±15, . . . .

Solution below by Lucas Stefanic, Rochester Institute of Technology.

It is not possible. To do so would require removing all checkers from the positions p2, where
p ranges over all primes. To prove that this task is impossible in a finite number of moves, it
suffices to show that at every step, we can only remove checkers from finitely many of these
positions.

Obviously, the first two move choices cannot remove checkers from infinitely many p2

positions, so we focus on the third choice. Let a, k be integers with a > 0, k > 1, and consider
the integers a, ak, ak2, . . .. Suppose that these integers include two squares of primes p21, p

2
2

with p21 < p22. Then (p2/p1)
2 is some power of k, and therefore an integer. But since p1
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and p2 are distinct primes, this is impossible. Hence, the third move choice can only remove
checkers from at most one p2 position.

#1342: Proposed by Ralph Morrison, Williams College

The following is from the 2016 Green Chicken Math Competition between Middlebury and
Williams Colleges. While attending a concert, Greenie was instructed by the performer
to “call her, maybe.” Unfortunately Greenie can’t remember the performer’s Skype name
exactly, but she remembers noticing that it had no repeated digits, was divisible by 3 but
not by 6 or by 9, and that it was the largest possible integer satisfying all those properties.
What was the number?

Solution below by Lucas Stefanic, Rochester Institute of Technology. Also solved

by the Armstrong Problem Solvers, Armstrong Campus of Georgia Southern

University, Matthew McCollum, North Central College, the Skidmore College

Problem Group, and Zachary Morgan, Eastern Kentucky University.

The number is 987654201.
Recall a positive integer is congruent modulo 9 to the sum of its digits. It’s easily verified

that 987654201 has no repeated digits and is divisible by 3, but not by 6 or 9. Suppose to
the contrary that N is a larger positive integer which satisfies these properties.

If N has all 10 digits from 0 to 9, then N ≡ 45 ≡ 0 mod 9. Thus N must have only 9
digits (we know it has at least 9 digits, as 987654201 works).

For N to be divisible by 3 but not 9, we need the sum of its digits to be divisible by 3 but
not 9. The one digit N does not have must then be 3 or 6. If N is missing 6, then N is at
most 987543210. Thus N is missing 3.

We have that N is at most 987654210, and we are assuming it is larger than 987654201.
The only candidates left are 987654204, 987654207, and 987654210. None of these integers
satisfy all the desired properties (the first two do not have distinct digits, while the third is
a multiple of 6); our claim follows by contradiction.

GRE Practice #2: Proposed by Steven Miller, Williams College

One of the greatest challenges students have with the math GRE subject test is that while
they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous to
guess). Consider the following (a discussion of the answer is included after the solutions to
earlier PME problems). Daneel is able to paint a house in two days, while Hari needs three
days. If they work together how many days will it take? (a) 2/3 (b) 3/4 (c) 5/6 (d) 6/5 (e)
3/2.

Solution: We can solve directly. Daneel paints 1/2 of a house in a day, while Hari paints
1/3. Thus if d is the number of days needed to paint a house, we have d · 1/2 + d · 1/3 = 1,
or d · 5/6 = 1 and thus d = 6/5.

While this wasn’t too bad to solve, I’ve elected to discuss this problem as it illustrates a
great principle. Specifically, we can easily come up with a tight enough range on where the
answer lives so that we do not need to solve it exactly. As Daneel paints faster than Hari,
the answer must be strictly between how long it would take if there were two Daneels (which
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is 1 day) and two Haris (which is 3/2 days). Notice only one of the five answers is in this
region; thus there is no need to find the true answer, as we can eliminate four of the five
options.

E-mail address : sjm1@williams.edu

Associate Professor of Mathematics, Department of Mathematics and Statistics, Williams

College, Williamstown, MA 01267
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