
PI MU EPSILON: PROBLEMS AND SOLUTIONS: FALL 2018

STEVEN J. MILLER (EDITOR)

1. Problems: Fall 2018

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue has
increased. Second, any school that submits correct solutions to at least two problems from
the current issue will be entered in a lottery to win a pizza party (value up to $100). Each
correct solution must have at least one undergraduate participating in solving the problem;
if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2 times in
the lottery. Solutions for problems in the Spring Issue must be received by October 31, while
solutions for the Fall Issue must arrive by March 31. Congratulations to the Missouri State
University Problem Solving Group and Columbus State University, which both qualified; the
randomly selected winner was the Missouri State University Problem Solving Group.

Figure 1. Pizza motivation; can you name the theorem that’s represented here?

Date: October 17, 2018.
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#1350: Proposed by Blake Mackall.
The following problem is inspired by a sports modeling problem. A function f is a continuous
probability density if it is non-negative and integrates to 1 (and, of course, is continuous).
Given a continuous function φ : [0, 1] → (0,∞), find a continuous probability density f :

[0, 1]→ [0,∞) which minimizes
∫ 1

0
φ(x)f 2(x)dx.

#1351: Proposed by Hongwei Chen, Christopher Newport University.
Let ζ be the Riemann zeta function; ζ(3) =

∑∞
n=1 1/n3 = 1.2020569 . . . is now known as

Apéry constant since Roger Apéry first proved that ζ(3) is irrational in 1979. Since then,
more efforts have been focused on seeking a rapidly convergent series. Show that

ζ(3) = 1 +
∞∑
n=1

1

n3 + 4n7
.

This series has the convergence rate O(n−7) instead of O(n−3).

#1352: Proposed by Pete Schumer, Middlebury College.
The following is from the 2017 Green Chicken Math Competition between Middlebury and
Williams Colleges. If the length of the side of a triangle is less than the average lengths of
the other two sides, show that the opposite angle is less than the average of the other two
angles.

#1353: Proposed by Kenny Davenport.
Let Cn = 1

n+1

(
2n
n

)
be the nth Catalan number, and Ln equal the nth Lucas number (these are

given by the recurrence Ln+1 = Ln + Ln−1 with initial conditions L0 = 2 and L1 = 1). Find

∞∑
n=0

nCn+1Ln/8
n.

#1354: David Benko, University of South Alabama.
There is a road around a lake with 9 gas stations along it, whose locations can be arbitrarily
fixed. We have a map of the road which also states how much gasoline is at each gas station.
We know how many miles per gallon our car gets, and interestingly it turns out that the total
amount of gasoline at the stations is exactly enough to go around the lake once. Starting
with an empty tank, can we always choose a gas station such that if a helicopter (carefully!)
drops our car at that gas station, we can use it as a starting point to go around the lake,
arriving back to the initial gas station? We assume that there are no other cars on the road,
the gasoline is free, the size of our gasoline tank is unlimited, and we always get the same
miles per gallon throughout our trip.

#1355: David Benko, atthew McMullen, Otterbein University, Westerville, OH.
Suppose limn→∞ an = 0. Does it necessarily follow that

∑
1

n1+an diverges? Prove or give a
counterexample.

GRE Practice #3: From ETS GRE Mathematics Practice Book
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One of the greatest challenges students have with the math GRE subject test is that while
they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous to
guess). Consider the following (a discussion of the answer is included after the solutions to
earlier PME problems), taken from one of the on-line collections of GRE problems (it was
Problem 3). Find ∫ e−2

e−3

dx

x log x
.

The choices are (a) 1, (b) 2/3, (c) 3/2, (d) log(2/3), (e) log(3/2).

Special Bonus: The Four Four Game: The Four Fours game (or problem) asks you to
represent as many numbers as you can using exactly four fours (though some variants just
require you to use at most four fours). For example,

1 =
44

44
or (4/4)4∗4 or

4
√

44/4,

to name a few. A colleague of mine, Steve Conrad of http://www.mathleague.com/, has
collected some of his favorites; see the Spring 2019 issue for his collection.

2. Solutions

We begin with a comment by Benjamin Dickman, Ph.D., Math Teacher and Math Coach
at The Hewitt School in New York, NY, on Problem 1254(d): For n > 2, are 9n − 2 and
9n + 2 ever both prime?. The published solution, which appeared in the Fall 2012 issue,
contains both typographical and mathematical errors, as pointed out in the comments of the
following MathOverflow answer: https://mathoverflow.net/q/105004.

For example, the claim that p = 1+(20a+1)6 implies 7 divides n has a typographical error
(it should say 7 divides p) and a mathematical error: If p is of this form, then there is no
reason to expect that 7 divides it. For example, when a = 1, we have p = 1 + (121)6 = 727,
which is not divisible by 7. Part (d) of this problem appears to be open, and it was submitted
without solution by the proposer. Parts (a) (b) and (c) are comparatively straightforward,
with a solution to part (c) subsuming parts (a) and (b).

#1343: Proposed by Ralph Morrison, Williams College.
The following is from the 2016 Green Chicken Math Competition between Middlebury and
Williams Colleges. (a) If we expand and collect like terms in (x+ y)2, there are three terms
(since (x+ y)2 = x2 + 2xy + y2). After you expand (w + x+ y + z)38 and collect like terms,
how many terms are there? (b) Greenie picks (uniformly at random) one of the terms you
counted up in part (a), deletes the integer coefficient, and plugs in w = 2, x = 3, y = 5, and
z = 7. What is the probability that the resulting number is divisible by 2016?

Solution below by Levent Batakci, Hershey High School, PA. Also solved by the
Missouri State University Problem Solving Group and Zach Folta, Columbus
State University.
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We solve (a) first. If we ignore coefficients, each distinct term in the expansion of (w +
x+ y + z)38 has the form

wa1xa2ya3za4

where a1, a2, a3, a4 ∈ N ∪ {0}.
We want to find the number of solutions to a1 + a2 + a3 + a4 = 38 where a1, a2, a3, a4 ∈

N ∪ {0}. This is equivalent to counting how many ways we can divide 38 indistinguishable
cookies among 4 distinguishable people. One way of enumerating this is creating 41 positions
on a line to place 38 cookies and 3 dividers (number of the people minus 1). The positions
of the dividers will determine the number of cookies each person gets. These 3 dividers can
be placed in the 41 positions in(

38 + 3

3

)
=

41!

3!38!
= 10660 ways.

Hence, there are 10660 terms in (w + x+ y + z)38.
For (b), note the prime factorization of 2016 is 25 ·32 ·7. Given that (w, x, y, z) = (2, 3, 5, 7),

each term of the expansion (with its integer coefficient deleted) has the form 2a13a25a37a4 .
This implies we want to find all possible solutions to a1 + a2 + a3 + a4 = 38 where a1 ≥
5, a2 ≥ 2, a3 ≥ 0, a4 ≥ 1. Our constraints imply that the number of ways is equivalent to
the number of ways to distribute 30 cookies among 4 people; the reduction is because 5 + 2
+ 1 = 8 of the cookies have already been assigned. By the same argument used in part (a),
there are (

30 + 3

3

)
=

33!

3!30!
= 5456

coefficient-less terms that are divisible by 2016. Since there are 10660 terms in total, the
probability of picking one that is divisible by 2016 uniformly at random is

5456

10660
=

1364

2665
≈ 0.51182.

#1344: Proposed by Steven J. Miller and Ralph Morrison, Williams College.
The following is from the 2016 Green Chicken Math Competition between Middlebury and
Williams Colleges, though it was probably inspired by a problem in the literature. In order
to prove a proposition on Diophantine equations, Greenie was planning to cite Fermat’s
Last Theorem, which says that there are no integer solutions to xn + yn = zn where n ≥ 3
and xyz 6= 0. However, as she is just an undergraduate chicken, she has not taken enough
classes to understand the proof. She doesn’t want to use a result she doesn’t understand.
Fortunately, she only needs a weaker version of Fermat’s Last Theorem: There are no posi-
tive integer solutions x, y, z, n to xn + yn = zn where n ≥ z and xyz 6= 0. Please prove it, so
that Greenie can complete her paper!

Solution below by Panagiotis T. Krasopoulos, Unified Social Security Fund, Athens,
Greece. Also solved by Missouri State University Problem Solving Group (who
proved more; their stronger result is also included).

Since z ≤ n we have that z ∈ {1, 2, . . . , n} and of course x, y ∈ {1, 2, . . . , z − 1} (because
if either x or y is ≥ z, then xn + yn > zn). In order to see that there are no integer solutions
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of the equation, we will prove that

xn + yn < zn,

for the above values of x, y, z and n ≥ 3 a given integer. It is clear that the maximum value
of xn + yn which is also a potential solution of the equation is equal to 2(z − 1)n. So it is
enough to prove

2(z − 1)n < zn,

equivalently (
1− 1

z

)n
<

1

2
.

It is also true that for z ∈ {1, 2, . . . , n} it holds
(
1− 1

z

)n ≤ (1− 1
n

)n
, so we have to prove

that (
1− 1

n

)n
<

1

2
.

Instead of proving the above inequality, we will prove that
(
1− 1

n

)n ≤ 1/e for n ≥ 3.
Equivalently we will prove that

ln

(
1− 1

n

)n
≤ ln

1

e
,

or

ln

(
1− 1

n

)
+

1

n
≤ 0.

Now, since n ≥ 3 we have 0 < 1/n ≤ 1/3 and by setting x = 1/n we can define the function
f(x) = ln(1 − x) + x for x ∈ [0, 1/3]. So, we want to prove that f(x) ≤ 0 for x ∈ [0, 1/3].
First we observe that f(0) = 0. Secondly, we will show that f is decreasing in [0, 1/3]. We
have

f
′
(x) =

x

x− 1
≤ 0

for x ∈ [0, 1/3]. Thus, f(x) ≤ 0 for x ∈ [0, 1/3]. So, the inequality
(
1− 1

n

)n ≤ 1/e < 1/2
holds for n ≥ 3. The proof is complete.

We claim, slightly more generally, that there are no such solutions with z < n/ ln 2 ≈
1.4427n

We show that 21/n/(21/n − 1) > n/ ln 2, for n ≥ 1. We then claim that for 1 ≤ z < n/ ln 2,
f(z) = zn−2(z−1)n > 0. This follows from the fact that the only roots of zn−2(z−1)n = 0
are z = 21/n/(21/n − 1) when n is odd and z = 21/n/(21/n − 1) or z = 21/n/(21/n + 1) when
n is even. Now 21/n/(21/n + 1) < 1 and 21/n/(21/n − 1) > n/ ln 2 by the first claim. By the
Intermediate Value Theorem, f(z) has the same sign throughout [1, n/ ln 2) and f(1) = 1,
so f(z) > 0 on the interval. Finally, since xyz 6= 0, z ≥ 1 and x, y ≤ z − 1. But then
zn = xn + yn ≤ 2(z − 1)n, and this contradicts the preceding inequality.

From the Missouri State University Problem Solving Group: We claim, slightly more gen-
erally, that there are no such solutions with z < n/ ln 2 ≈ 1.4427n. First show that
21/n/(21/n−1) > n/ ln 2, for n ≥ 1. Then for 1 ≤ z < n/ ln 2, note f(z) = zn−2(z−1)n > 0;
this follows from the fact that the only roots of zn−2(z−1)n = 0 are z = 21/n/(21/n−1) when
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n is odd and z = 21/n/(21/n−1) or z = 21/n/(21/n+1) when n is even. Now 21/n/(21/n+1) < 1
and 21/n/(21/n − 1) > n/ ln 2 by the first claim. By the Intermediate Value Theorem, f(z)
has the same sign throughout [1, n/ ln 2) and f(1) = 1, so f(z) > 0 on the interval. Finally,
since xyz 6= 0, z ≥ 1 and x, y ≤ z− 1. But then zn = xn + yn ≤ 2(z− 1)n, contradicting the
preceding inequality.

#1345: Northwest Missouri State University, Problem Solving Group, Maryville, MO
There is no general method for finding the closed-form of a convergent series. Techniques
can vary from problem to problem; the following problem can be solved using methods from
Calculus I and II: Find a closed form for

x+
∞∑
n=1

(−1)n−1(2n− 3)(2n− 5) · · · 5 · 3 · 1
2nn!(2n+ 1)

x2n+1.

Note: one often writes (2n− 1)!! for the double factorial of 2n− 1, i.e., the product of every
other number from 2n− 1 down to 1.

Solution below by Missouri State University Problem Solving Group. Also solved
by Volkhard Schindler and Kenneth Davenport.

We claim that the sum is

1

2

(
x
√

1 + x2 + arcsinh(x)
)

within the interval of convergence (which is [−1, 1]).
By the generalized binomial theorem

x
√

1 + x2 = x
(
1 + x2

)1/2
= x

(
1 +

∞∑
n=1

(
1/2

n

)
x2n

)

= x+
∞∑
n=1

(1/2)(−1/2)(−3/2) . . . (−(2n− 3)/2)

n!
x2n+1

= x+
∞∑
n=1

(−1)n−1
(2n− 3)!!

2nn!
x2n+1

and

1√
1 + t2

=
(
1 + t2

)−1/2
= 1 +

∞∑
n=1

(
−1/2

n

)
t2n

= 1 +
∞∑
n=1

(−1/2)(−3/2)(−5/2) . . . (−(2n− 1)/2)

n!
t2n

= 1 +
∞∑
n=1

(−1)n
(2n− 1)!!

2nn!
t2n.
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Therefore (the order of the sum and the integral can be interchanged as the integral of the
sum of the absolute values is finite)

arcsinh(x) =

∫ x

0

1√
1 + t2

dt

=

∫ x

0

1 +
∞∑
n=1

(−1)n
(2n− 1)!!

2nn!
t2ndt

= x+
∞∑
n=1

(−1)n
(2n− 1)!!

2nn!(2n+ 1)
x2n+1.

Finally

1

2

(
x
√

1 + x2 + arcsinh(x)
)

=
1

2

(
x+

∞∑
n=1

(−1)n−1
(2n− 3)!!

2nn!
x2n+1

+x+
∞∑
n=1

(−1)n
(2n− 1)!!

2nn!(2n+ 1)
x2n+1

)

= x+
1

2

∞∑
n=1

(−1)n−1
(2n− 3)!!

2nn!

(
1− (2n− 1)

2n+ 1

)
x2n+1

= x+
1

2

∞∑
n=1

(−1)n−1
(2n− 3)!!

2nn!
· 2

2n+ 1
x2n+1

= x+
∞∑
n=1

(−1)n−1
(2n− 3)!!

2nn!(2n+ 1)
x2n+1

as claimed.

#1346: Proposed by Hongwei Chen, Department of Mathematics, Christopher Newport
University.
Let Fn be the nth Fibonacci number with F1 = F2 = 1, and Fn = Fn−1 + Fn−2 for n > 2.
Define

an =
AFn+1

n
bn. (2.1)

Find a constant A such that, for sufficiently large n, an ∼ AFn+1 .

Solution below by E. Ionascu and Christopher Lanen, Columbus State University.
Solution: We will show that the constant A for which the sequence {bn} defined by (2.1)
is convergent to 1 is uniquely determined by this condition and it is given by

A = exp

(
∞∑
k=0

1

φk
ln(1 +

1

k + 1
)

)
≈ 3.200960647, (2.2)

where φ = 1+
√
5

2
> 1 is the Golden ratio. Clearly the series in (2.2) is convergent by the

comparison test, with respect to the convergent geometric progression series
∑∞

k=0
1
φk

= 1
1− 1

φ

.
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From (2.1), we see that ln an − Fn+1 lnA+ lnn = ln bn, and so bn → 1 if and only if

ln an − Fn+1 lnA+ lnn→ 0. (2.3)

By Binet’s formula Fn =
φn−(−1

φ
)n

√
5

, Fn+1 converges to infinity and

lim
n→∞

lnn

Fn+1

= limn→∞
√

5
lnn

φn+1
[
1− (−1

φ2
)n+1

] = lim
n→∞

√
5

lnn

φn+1
= lim

x→∞

√
5

lnx

φx+1
= 0.

The last limit can be shown to be true, using for instance L’Hospital’s Rule. From (2.3),
dividing by Fn+1, we get that

lnA = lim
n→∞

ln an
Fn+1

= lim
n→∞

n∑
k=1

Fk ln (n+ 1− k)

Fn+1

.

In this limit, because the denominator is strictly increasing and convergent to infinity, we
can apply Stolz-Cesaro’s Lemma yielding:

lnA = lim
n→∞

n+1∑
k=1

Fk ln (n+ 2− k)−
n∑
k=1

Fk ln (n+ 1− k)

Fn+2 − Fn+1

⇔

lnA = lim
n→∞

Fn+1 ln (1) +
n∑
k=1

Fk ln (n+ 2− k)−
n∑
k=1

Fk ln (n+ 1− k)

Fn
= lim

n→∞

n∑
k=1

Fk ln n+2−k
n+1−k

Fn
.

At this point, we can use Binet’s formula and get

lnA = lim
n→∞

n∑
k=1

(φk − (−1
φ

)k) ln n+2−k
n+1−k

φn − (−1
φ

)n
= lim

n→∞

n∑
k=1

(φk−n − (−1)k
φk+n

) ln(1 + 1
n+1−k )

1− (−1
φ2

)n
⇔

lnA = lim
n→∞

n∑
k=1

1

φn−k
ln(1 +

1

n+ 1− k
)− lim

n→∞

n∑
k=1

(−1)k

φn+k
ln(1 +

1

n+ 1− k
).

In the first limit above, we change the index of summation n− k = j and in the second we
observe that

|
n∑
k=1

(−1)k

φn+k
ln(1 +

1

n+ 1− k
)| ≤

n∑
k=1

|(−1)k|
φn+k

1

n+ 1− k

since ln(1 + x) ≤ x for all x ≥ 0. So, we conclude that

|
n∑
k=1

(−1)k

φn+k
ln(1 +

1

n+ 1− k
)| ≤

n∑
k=1

1

φn+k
<

1

φn+1

∞∑
s=0

1

φs
=

1

φn+1

1

1− 1
φ

→ 0.

Then, we obtain

lnA = lim
n→∞

n−1∑
j=0

1

φj
ln(1 +

1

j + 1
) =

∞∑
k=0

1

φk
ln(1 +

1

k + 1
)

and so the claim in (2.2) follows.
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In order to finish this proof, we still have to prove (2.3) for this choice of A. Let us observe
that

ln(an) =
n∑
k=1

Fk ln(n+ 1− k) =
n∑
k=1

(Fk+2 − Fk+1) ln(n+ 1− k)

=
n∑
k=1

Fk+2 ln(n+ 1− k)−
n∑
k=1

Fk+1 ln(n+ 1− k). (2.4)

Changing the index of summation in the sum
n∑
k=1

Fk+2 ln(n+ 1− k) gives

n+1∑
k=2

Fk+1 ln(n+ 2− k) = Fn+2 ln(1)− ln(n+ 1) +
n∑
k=1

Fk+1 ln(n+ 2− k).

Then, we can continue

ln(an) + lnn = − ln(1 +
1

n
) +

n∑
k=1

Fk+1 ln(1 +
1

n+ 1− k
).

Using Binet’s formula this leads to

ln(an)+lnn = − ln(1+
1

n
)+

1√
5

n∑
k=1

φk+1 ln(1+
1

n+ 1− k
)− 1√

5

n∑
k=1

(−1)k+1

φk+1
ln(1+

1

n+ 1− k
).

The first sum above can be written in the following way:

n∑
k=1

φk+1 ln(1 +
1

n+ 1− k
) = φn+1

n∑
k=1

φk−n ln(1 +
1

n+ 1− k
) = φn+1

n−1∑
j=0

1

φj
ln(1 +

1

j + 1
).

The second sum can be transformed in a similar way, but with an upper bound:

|
n∑
k=1

(−1)k+1

φk+1
ln(1 +

1

n+ 1− k
)| ≤ 1

φn+1

n−1∑
j=0

φj ln(1 +
1

j + 1
)→ 0,

the last limit being a consequence of Stolz-Cesaro’s Lemma again. So, in order to prove
(2.3), we need to show that

lim
n→∞

(ln(an)− Fn+1 lnA+ lnn) = lim
n→∞

(−1)n+1

√
5

1

φn+1
lnA− lim

n→∞

1√
5
φn+1

∞∑
j=n

1

φj
ln(1 +

1

j + 1
).

(2.5)

The first limit is clearly equal to zero, and for the second limit let us observe that

φn+1

∞∑
j=n

1

φj
ln(1 +

1

j + 1
) ≤ 1

φ(n+ 1)
(1 +

1

φ
+

1

φ2
+ · · · ) =

1

φ(n+ 1)

1

1− 1
φ

→ 0,

and therefore, (2.3) is correct.

Remark: We have the following improved asymptotic formula

an =
AFn+1

n
(1 +

L

n
+ o(1/n)), L = something in terms of

√
5 andφ. (2.6)
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#1347: Proposed by Zhiqi Li on behalf of Math 377 Spring 2017, Williams College.
The following is a standard problem (though often concrete numbers are given), ending in a
more open question that likely is in the literature but if so is not as well known. Let f(n) be
the smallest number of points on a unit circle such that no matter where those f(n) points
are chosen, at least n of them will be on a common closed semi-circle. Find f(n). Extra
credit: what would the corresponding values be on a sphere?

Solution below by Mohammad Ozaslan, University of Colorado Boulder. Also
solved by Elizabeth Waye, College at Brockport, SUNY.
The answer is

f(n) =

{
1, n = 1,

2n− 2, n ≥ 2.

Proof. If n = 1, then 1 point on the circle clearly guarantees that one point lies on a closed
semicircle. We look at the case when n ≥ 2.

Let O be the center of the unit circle, and suppose we are given 2n − 2 distinct points
on the circle. Label a point A, and draw the line OA to divide the circle into two closed
semicircles. We will denote them by α, β. Note that A is on both of these closed semicircles,
and that we have 2n− 3 points on the circle, excluding A.

Case 1. If α has at least n− 1 of these points, by including A we will have at least n points
on α.

Case 2. Otherwise, α has at most n−2 of these points. Thus, β has at least (2n−3)−(n−2) =
n− 1 of these points. By including A, β has at least n points.

In any case, there exists a closed semicircle with at least n points. Therefore,

f(n) ≤ 2n− 2.

Now, we will show that 2n − 3 points can be chosen on a unit circle such that n points
do not appear on any closed semicircle. If n = 2, then 2n − 3 = 1, so 2 points do not
even appear on the circle, and thus do not appear on a semicircle. Otherwise, construct a
regular (2n−3)-gon, with the points incident to our unit circle. Note that the angle between
adjacent points is 2π

2n−3 .
Assume, for contradiction, that at least n points appear on some closed semicircle. Then,

the sum of the angles between adjacent points on the semicircle should be less than or equal
to π. Now, choose n adjacent points in this closed semicircle, such that we get a path if
we look only at these points and the edges between them on the (2n − 3)-gon. With these
points, note that exactly n− 1 angles between adjacent points exist. Then, the sum of these
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angles is (n− 1) 2π
2n−3 , and we must have

(n− 1)
2π

2n− 3
≤ π,

2n− 2

2n− 3
≤ 1,

2n− 2 ≤ 2n− 3,

3 ≤ 2, a contradiction.

Hence, n points cannot appear on some closed semicircle, so f(n) 6= 2n− 3.
We want to use this fact to show that f(n) > 2n − 3. Assume, for contradiction, that

f(n) = m, where m ≤ 2n − 3. Then, construct 2n − 3 points on a unit circle as we did
previously, and choose any m points on the circle. Since f(n) = m, n of these m points must
appear on some closed semicircle, by definition. However, we have just proved that this is
not possible, and thus have a contradiction.

Thus, f(n) > 2n − 3. Since f(n) ≤ 2n − 2, we have that f(n) = 2n − 2, for n ≥ 2.
Therefore,

f(n) =

{
1, n = 1,

2n− 2, n ≥ 2.

�

#1349: Proposed by Kenny Davenport and Allen Pierce.
In #978 (volume 11 (2000), number 3), Robert Hess asked for a 4× 4 array of integers such
that the four digit numbers which are the rows and the four digit numbers which are the
columns are all perfect squares and the digit 0 is never used; the solution is

2 1 1 6
1 2 2 5
1 2 9 6
6 5 6 1

(the solution is unique). Find at least 5 solutions to the corresponding problem for a 5× 5
array where again the digit 0 cannot be used. Bonus: if additionally the matrix is symmet-
ric, how many solutions are there?

Solution below by Haile Gilroy, McNeese State University, Lake Charles, LA.
Also solved by Jason L. Brown, CSU - Columbus, Georgia.
First, create a list of the squares of integers from 100 to 316. These are the perfect squares
which are five digits long. Then, delete all perfect squares on the list containing zeros.

Notice that a perfect square must end in one of the following digits: 1, 4, 5, 6, or 9, not
including zero. So, the fifth row and column of the desired array may only contain these
digits. There are only fifteen numbers on the list meeting this criteria, so these are the only
possiblities for the fifth row or column of a solution.

Next, notice from the list of perfect squares that a number with 1, 4, or 9 in the ones place
must have an even number in the tens place. A number with 5 in the ones place must have a
2 in the tens place, and a number with 6 in the ones place must have an odd number in the
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tens place. This creates patterns of even and odd digits in the fourth row and column, which
can be used to eliminate multiple fifth row-column pairings. For example, if 4 and 6 are the
fourth digits of the fifth row and column, respectively, this pairing may be eliminated, as
the fourth digit of the fourth row or column cannot be both even and odd. More pairs may
be eliminated if a certain even-odd digit combination does not exist on the list.

After further deductions, the following solutions were found:
1 8 2 2 5
8 1 7 9 6
2 7 5 5 6
2 9 5 8 4
5 6 6 4 4

 ,


3 4 2 2 5
4 5 7 9 6
2 7 5 5 6
2 9 5 8 4
5 6 6 4 4

 ,


5 7 1 2 1
7 2 3 6 1
1 3 9 2 4
2 6 2 4 4
1 1 4 4 9

 ,


4 5 5 2 1
5 3 3 6 1
5 3 8 2 4
2 6 2 4 4
1 1 4 4 9

 ,


2 5 9 2 1
5 8 5 6 4
9 5 4 8 1
2 6 8 9 6
1 4 1 6 1


So far, all solutions found have been symmetric matrices.

The following 16 symmetrical results were found by Jason Brown:

1 8 2 2 5
8 1 7 9 6
2 7 5 5 6
2 9 5 8 4
5 6 6 4 4

1 7 4 2 4
7 3 9 8 4
4 9 7 2 9
2 8 2 2 4
4 4 9 4 4

2 5 9 2 1
5 8 5 6 4
9 5 4 8 1
2 6 8 9 6
1 4 1 6 1

3 8 4 1 6
8 7 6 1 6
4 6 2 2 5
1 1 2 3 6
6 6 5 6 4

4 2 4 3 6
2 7 8 8 9
4 8 8 4 1
3 8 4 1 6
6 9 1 6 9

4 3 2 6 4
3 1 6 8 4
2 6 5 6 9
6 8 6 4 4
4 4 9 4 4

3 4 2 2 5
4 5 7 9 6
2 7 5 5 6
2 9 5 8 4
5 6 6 4 4

2 9 2 4 1
9 4 8 6 4
2 8 5 6 1
4 6 6 5 6
1 4 1 6 1

3 3 1 2 4
3 1 6 8 4
1 6 1 2 9
2 8 2 2 4
4 4 9 4 4

6 5 5 3 6
5 4 2 8 9
5 2 4 4 1
3 8 4 1 6
6 9 1 6 9

5 7 1 2 1
7 2 3 6 1
1 3 9 2 4
2 6 2 4 4
1 1 4 4 9

6 8 1 2 1
8 1 7 9 6
1 7 9 5 6
2 9 5 8 4
1 6 6 4 1

7 9 5 2 4
9 5 4 8 1
5 4 7 5 6
2 8 5 6 1
4 1 6 1 6

9 2 4 1 6
2 7 8 8 9
4 8 8 4 1
1 8 4 9 6
6 9 1 6 9

9 4 8 6 4
4 9 2 8 4
8 2 3 6 9
6 8 6 4 4
4 4 9 4 4

1 4 6 4 1
4 4 9 4 4
6 9 6 9 6
4 4 9 4 4
1 4 6 4 1

As a way to verify the accuracy and completeness of his program, a similar version found
the unique solution found for the 4× 4 grid; it also produced the four solutions for a 2× 2
grid, which can also be easily verified by hand.

GRE Practice #3: From ETS GRE Mathematics Practice Book
One of the greatest challenges students have with the math GRE subject test is that while

they solve a problem, often it is faster to eliminate four wrong answers than find the exact
12



solution (or at least eliminate a few answers, at which point on average it is advantageous to
guess). Consider the following (a discussion of the answer is included after the solutions to
earlier PME problems), taken from one of the on-line collections of GRE problems (it was
Problem 3). Find ∫ e−2

e−3

dx

x log x
.

The choices are (a) 1, (b) 2/3, (c) 3/2, (d) log(2/3), (e) log(3/2).

Solution: We can solve directly if we can find the anti-derivative of the integrand. As there
are exponentials and logarithms and inverses, it’s not unreasonable to expect a logarithm or
exponential might play a part in the anti-derivative of 1/(x log x). If we do a u-substitution
and set u = log x then du = dx/x, the bounds of integration x : e−3 → e−2 becomes
u : −3→ −2 and we find∫ e−2

x=e−3

dx

x log x
=

∫ −2
u=−3

du

u
= log(u)

∣∣∣−2
u=−3

,

but this makes no sense as we cannot take a logarithm at a negative value!
The clock is ticking. What did we do wrong? The problem is we’re integrating in a

negative region. We should first change variables and let w = −u and then integrate. So if
w = −u then u : −3 → −2 is the same as w : 3 → 2, and du/u = dw/w as the negative
signs cancel. We find∫ −2

u=−3

du

u
=

∫ 2

w=3

dw

w
= log(w)

∣∣∣2
w=3

= log(2)− log(3) = log(2/3).

This is the correct answer, but it took us precious time to find it, we needed to see a
u-substitution and we had an issue where we were evaluating a logarithm at a negative
value (although, interestingly, if we did that and got log(−2) − log(−3) and then used the
quotient-difference rule to simplify this as log(−2−3) we would find the right answer!).

Fortunately, there is a faster way to do this problem. Note this is not the same as there
is a faster way to find the answer; we only need to eliminate four of the five answers. Let’s
try and get a sense of how large the integrand 1/(x log x) is with x ranging from e−3 to e−2.
At the two extremes we get

1

e−3 log(e−3)
= − 1

3e−3
,

1

e−2 log(e−2)
= − 1

2e−2
.

This is enough to eliminate four of the answers! The reason is we see our integrand is negative
throughout the entire region, and of the five answers only (d) log(2/3) is negative!

It’s worth emphasizing that often the hardest part of this exam is time management. You
want to get through the easier problems quickly to save time for the harder ones later on. We
were fortunate here with the answers; only one was negative and the integrand was negative.
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You really want to get in the mindset of looking quickly at the problem and getting a rough
estimate of the solution. Frequently that is enough, as only one answer is often close....

E-mail address: sjm1@williams.edu

Professor of Mathematics, Department of Mathematics and Statistics, Williams College,
Williamstown, MA 01267
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