
PI MU EPSILON: PROBLEMS AND SOLUTIONS: SPRING 2019

STEVEN J. MILLER (EDITOR)

1. Problems: Spring 2019

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is a
solution clearly state the problem number. Solutions to open problems from any year are
welcome, and will be published or acknowledged in the next available issue; if multiple correct
solutions are received the first correct solution will be published. Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue
has increased. Second, any school that submits correct solutions to at least two problems
from the current issue will be entered in a lottery to win a pizza party (value up to $100).
Each correct solution must have at least one undergraduate participating in solving the
problem; if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2
times in the lottery. Solutions for problems in the Spring Issue must be received by October
31, while solutions for the Fall Issue must arrive by March 31 (though slightly later may be
possible due to when the final version goes to press, submitting by these dates will ensure
full consideration). This issue’s winning school is North Central College; congratulations!

Figure 1. Pizza motivation; can you name the theorem that’s represented here?

Date: April 10, 2019.
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Note: After the Fall 2018 pages went to press, several additional solutions were received.
These include #1348 by Kenneth Davenport.

#1356: Proposed by Greg Oman and Ikko Saito, University of Colorado, Colorado Springs.
Problem. Let f : R → R be a continuous function such that f(0) = 0. For r ∈ R, say that
f is homomorphic at r if f(r + x) = f(r) + f(x) for all x ∈ R. Next, set Hf := {r ∈ R : f
is homomorphic at r}. One can check that Hf is an additive subgroup of R (which may be
assumed in your solution). For the purposes of this problem, say that a subgroup G of R is
realizable if G = Hf for some continuous f : R → R such that f(0) = 0.

(a) Prove that every (additive) cyclic subgroup of R is realizable.
(b) Find all non-cyclic realizable subgroups of R.

#1357: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams).
Let n be a positive integer. A pin of length n units is dropped randomly onto a large floor

ruled with equally spaced parallel lines 1 unit apart. When it lands, the pin can intersect k
parallel lines, where k is an integer between 0 and n + 1 inclusive. If the center of the pin
lands halfway between two adjacent lines, which value of k is most probable?

#1358: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams).
Let n be a positive integer. A pin of length n units is dropped randomly onto a large floor

ruled with equally spaced parallel lines 1 unit apart. When it lands, the pin can intersect k
parallel lines, where k is an integer between 0 and n+ 1 inclusive. Which value of k is most
probable? (Note unlike the previous problem, now there is no restriction on the location of
the center.)

#1359: Proposed by Robert C. Gebhardt, Chester, NJ.
Determine the following sums:

(a)
1

1 + 2
− 1

3 + 4
+

1

5 + 6
− 1

7 + 8
+ · · ·

(b)
1

1 · 2 +
1

3 · 4 +
1

5 · 6 +
1

7 · 8 + · · ·

(c)
1

1 · 2 − 1

3 · 4 +
1

5 · 6 − 1

7 · 8 + · · ·

#1360: Proposed by Stanley Wu-Wei Liu, East Setauket, Long Island, New York.
Cutting a cake, be it round or otherwise, is a fun skill with real-world applications. When

mathematicians work on such dissection problems starting out with a quadrilateral-shaped
cake and whimsically demanding that the constituent pieces be similar polygons (in the
precise Euclidean sense), a lot is known when the number of these similar polygons is chosen
to be four. Consider the case of an isosceles trapezoid with side-length ratios of
1:1:1:2. There are many fascinating solutions; find at least four partitions of the 1:1:1:2
isosceles trapezoid into four similar polygons.

2



The inspiration for this problem came from an MIT Puzzle Corner problem (edited by
Professor Allan Gottlieb, NYU) appearing in the July / August 2018 issue of MIT News, in
which Problem J/A 2 (on page 63) is stated as follows:

J/A 2. Dick Hess had sent us the following problem, which he attributed
to Bob Wainwright. The diagram below shows an equilateral [sic] trapezoid
constructed from three equilateral triangles. You are to divide the figure
into four similar pieces of three different sizes (i.e., exactly two pieces are
congruent).

See also https://s3.amazonaws.com/files.technologyreview.com/p/pub/magazine/

mitnews/puzzlecorner/JA18MITPuzzleCorner.pdf, and for more on this problem, includ-
ing readings, generalizations and open problems, email the proposer at swwliu@alum.mit.edu.

#1361: Proposed by Clayton Mizgerd and Steven J. Miller, Williams College.
Consider a circle of radius 2019. For each pair of positive integers c and k, find a positive

integer N (which may depend on c and k) such that if we choose any k points on the circle,
then there is at least one closed arc A such that the length of the arc A is 1/c of the length
of the perimeter of the circle, and at least k of the N points are on that arc.

GRE Practice #4: Proposed by Steven Miller, Williams College
One of the greatest challenges students have with the math GRE subject test is that while

they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous to
guess). Consider the following (a discussion of the answer is included after the solutions to
earlier PME problems), taken from one of the on-line collections of GRE problems (it was
Problem 45). How many positive numbers x satisfy the equation cos(97x) = x? The options
are (a) 1, (b) 15, (c) 31, (d) 49, (e) 96.

Special Bonus: The Four Four Game: The Four Fours game (or problem) asks you to
represent as many numbers as you can using exactly four fours (though some variants just
require you to use at most four fours). For example,

1 =
44

44
or (4/4)4∗4 or

4
√
44/4,

to name a few. A colleague of mine, Steve Conrad of http://www.mathleague.com/, has
collected some of his favorites. We stated the problem in the last issue (Fall 2019), and
provide the promised expansions in Figure 2.

2. Solutions

#1348: Proposed by Matthew McMullen, Otterbein University.
An equable triangle is one whose area and perimeter evaluate to the same number. Find the
real number a such that there exists exactly one equable triangle with two sides of length a.
(Bonus: Classify all pairs of real numbers (a, b) with a ≥ b such that there exists exactly
one equable triangle with one side of length a and another side of length b.)
Solution by Ioannis D. Sfikas, Athens, Greece.
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Figure 2. These ‘simple’ solutions were submitted to Steve Conrad by
students primarily from the U.S. and Canada when he was the problem editor
of the NCTM’s Mathematics Student Journal. In addition to the standard
operations (+,−, ·, \), students also used square-roots, overline for infinite
decimal expansions, and factorials. Neither 44 nor 4.4 were used. The hardest
was 73, though 77, 81, 83, 87, 89 and 93 were also challenging.

Let (a, b, a) be the sides of the triangle. In the usual notation, we have

A = (s− a)
√

s(s− b) =
b

4

√
4a2 − b2, P = 2s = 2a+ b,

where s = a+b+c
2

is the semiperimeter, A is the area and P the perimeter of the triangle
(a, b, a). Since we have

s =
2a+ b

2
, s− a =

b

2
, s− b =

2a− b

2
,
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we have from the hypothesis and the classical area formula of Heron that A = P implies

(s− a)
√

s(s− b) = 2s or (s− a)
√
s− b = 2

√
s,

which yields

2(b2 − 16)a = (b2 + 16)b.

If b2 = 16, we have 0a = 32b, or b = 0, a contradiction. So, we have b 6= 4, and

a = a(b) =
(b2 + 16)b

2(b2 − 16)
.

Since a < 0 for 0 < b < 4,

lim
b→∞

a(b) = lim
b→∞

(b2 + 16)b

2(b2 − 16)
= ∞

and

lim
b→2

a(b) = lim
b→2+

(b2 + 16)b

2(b2 − 16)
= ∞

then the function a = a(b) is not 1 − 1 for a = amin. So, we can easily calculate that for

b = 4
√

2 +
√
5 ≈ 8.2327 we have amin =

2
√

2+
√
5(3+

√
5))

1+
√
5

≈ 6.6604. We find

P = 2a+ b = 2

√

58 + 26
√
5 ≈ 21.5534

and

A =
b

4

√
4a2 − b2 = 2

√

58 + 26
√
5 ≈ 21.5534.

Bonus solution (from the proposer). Suppose that the three sides of a triangle have
length a, b, and 2x, where a ≥ b. Put u = a+b

2
and v = a−b

2
. Then a = u+ v and b = u− v.

Note that 0 ≤ v < x < u (x must be between v and u due to the triangle inequality). By
Heron’s Formula, the area of this triangle is given by

A =
√

(u+ x)(u− x)(x− v)(x+ v).

Our triangle is equable only if 2u+ 2x = A; or, after some algebra, only if

4(u+ x) = (u− x)(x− v)(x+ v).

Now, depending on the values of u and v, this equation has no positive solutions for x, two
positive solutions for x (both of which are between v and u), or exactly one positive solution
for x (which is between v and u). In the first case there is no equable triangle with one side
of length a and another side of length b, in the second case there are two equable triangles
with one side of length a and another side of length b, and in the third case there is exactly
one equable triangle with one side of length a and another side of length b. Thus, we need
to classify all values of u and v such that this equation has exactly one positive solution.

We could proceed as in the above solution, but another method would be to write our
equation as

(x− u)(x− v)(x+ v) + 4(x+ u) = 0
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and set the discriminant of the left-hand side equal to 0. Doing this (I used WolframAlpha),
we get

(v2 + 4)u4 − 2(v4 + 28v2 + 88)u2 + (v2 − 4)3 = 0.

The only positive solution for u with u > v is given by

u =

√

v4 + 28v2 + 88 + 8
√

(v2 + 5)3

v2 + 4
.

To make this look a bit nicer, put k =
√
v2 + 5. Then we have (again with help from

WolframAlpha)

u = (k + 3)

√

k + 3

k + 1
and v =

√
k2 − 5.

Putting this all together, we can classify our “unique equable pairs” (a, b) by

a = (k + 3)

√

k + 3

k + 1
+
√
k2 − 5

and

b = (k + 3)

√

k + 3

k + 1
−
√
k2 − 5,

where k ≥
√
5. (The corresponding third side of the triangle can be shown to be 2x =

2
√

(k + 3)(k + 1).)

#1351: Proposed by Hongwei Chen, Christopher Newport University.
Let ζ be the Riemann zeta function; ζ(3) =

∑∞
n=1 1/n3 = 1.2020569 . . . is now known as

Apéry constant since Roger Apéry first proved that ζ(3) is irrational in 1979. Since then,
more efforts have been focused on seeking a rapidly convergent series. Show that

ζ(3) = 1 +

∞
∑

n=1

1

n3 + 4n7
.

This series has the convergence rate O(n−7) instead of O(n−3).
Solution below by the proposer; first correct solution received by Kenny Davenport. Also
solved by Brian D. Beasley, Presbyterian College.

The partial fraction decomposition

1

x3(1 + 4x4)
=

1

x3
+

1

2x2 + 2x+ 1
− 1

2x2 − 2x+ 1
,

yields

1

n3(1 + 4n4)
=

1

n3
+

1

2n2 + 2n+ 1
− 1

2n2 − 2n+ 1

=
1

n3
+

1

2n2 + 2n+ 1
− 1

2(n− 1)2 + 2(n− 1) + 1
.
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Thus, by telescoping, we have

∞
∑

n=1

1

n3 + 4n7
=

∞
∑

n=1

1

n3
+

∞
∑

n=1

(

1

2n2 + 2n+ 1
− 1

2(n− 1)2 + 2(n− 1) + 1

)

= ζ(3)− 1,

which is equivalent to the claimed identity. This completes the proof.

#1352: Proposed by Pete Schumer, Middlebury College.
The following is from the 2017 Green Chicken Math Competition between Middlebury and
Williams Colleges. If the length of the side of a triangle is less than the average lengths of
the other two sides, show that the opposite angle is less than the average of the other two
angles.
Solution by Ioannis D. Sfikas, Athens, Greece. Also solved by Levent Adil Batakci,

Hershey High School, Jennifer Yager, North Central College. x Let a = BC, b =
AC and c = AB be the lengths of the triangle ABC, with opposite angles A,B and C. From
the given information, we order the sides so that

a ≤ b+ c

2

(call this equation (1)). The law of sines states that

a

sinA
=

b

sinB
=

c

sinC
= 2R,

where R is the diameter of the triangle’s circumcircle. Applying the law of sines with (1)
yields

2R sinA ≤ 2R sinB + 2R sinC

2
or sinA ≤ sinB + sinC

2
.

If p1, . . . , pn are positive numbers which sum to 1 and f(x) is a real continuous function
that is concave, then by Jensen’s inequality we have

n
∑

p=1

pif(xi) ≤ f

(

n
∑

p=1

pixi

)

.

Since the function f(x) = sin x is concave in the interval (0, π), we find

sinB + sinC

2
≤ sin

(

B + C

2

)

and sinA ≤ sinB + sinC

2
≤ sin

(

B + C

2

)

.

Thus, we conclude that A ≤ (B + C)/2, completing the proof. (Note: The same problem
appears in Index to Mathematical Problems, 1980-1984 by Stanley Rabinowitz, MathPro
Press, page 140.)

#1353: Proposed by Kenny Davenport.
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Let Cn = 1
n+1

(

2n
n

)

be the nth Catalan number, and Ln equal the nth Lucas number (these are
given by the recurrence Ln+1 = Ln + Ln−1 with initial conditions L0 = 2 and L1 = 1). Find

∞
∑

n=0

nCn+1Ln/8
n.

Solution by Hongwei Chen, Christopher Newport University. Also solved by Ioan-

nis D. Sfikas, Athens, Greece and Brian Bradie, Christopher Newport Univer-

sity.
We determine the sum value by using the generating function of {nCn+1}. Recall the

well-known formula
∞
∑

n=0

(

2n

n

)

tn =
1√

1− 4t
.

Integrating this equation from 0 to x gives
∞
∑

n=0

Cnx
n+1 =

1−
√
1− 4x

2
.

Dividing both sides by x2 and then moving 1/x to the right-hand side yields
∞
∑

n=0

Cn+1x
n =

1−
√
1− 4x

2x2
− 1

x
=

1− 2x−
√
1− 4x

2x2
.

Finally, applying x d
dx

obtains the generating function of {nCn+1}:

G(x) :=

∞
∑

n=0

nCn+1x
n =

1− 3x− (1− x)
√
1− 4x

x2
√
1− 4x

. (1)

Let φ = (1 +
√
5)/2, φ̄ = (1−

√
5)/2. Then Ln = φn + φ̄n. By (1), we have

∞
∑

n=0

nCn+1Ln/8
n = G(φ/8) +G(φ̄/8). (2)

Since
√

1− 4φ/8 =
√

1− φ/2 =
1

2

√

3−
√
5 =

√
2

4
(1−

√
5);

√

1− 4φ̄/8 =

√

1− φ̄/2 =
1

2

√

3 +
√
5 =

√
2

4
(1 +

√
5);

this, together with (2), leads to
∞
∑

n=0

nCn+1Ln/8
n = 64

√
10− 200.

#1354: David Benko, University of South Alabama.
There is a road around a lake with 9 gas stations along it, whose locations can be arbitrarily
fixed. We have a map of the road which also states how much gasoline is at each gas station.
We know how many miles per gallon our car gets, and interestingly it turns out that the total
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amount of gasoline at the stations is exactly enough to go around the lake once. Starting
with an empty tank, can we always choose a gas station such that if a helicopter (carefully!)
drops our car at that gas station, we can use it as a starting point to go around the lake,
arriving back to the initial gas station? We assume that there are no other cars on the road,
the gasoline is free, the size of our gasoline tank is unlimited, and we always get the same
miles per gallon throughout our trip.
Solution by Ashland University Undergraduate Problem Solving Group. Also
solved by Timothy O’Neill and David Schmitz at North Central College.

Consider the gas stations on a circle, with Xi the location of the ith gas station with Gi

units of gas, measured in units of the number of miles the car can travel using the gas. Let
Di be the distance between Xi and Xi+1. We are given that

D1 +D2 + · · ·+D9 = G1 +G2 + · · ·+G9.

Let’s start at X1 and move towards X2 ; we continue around the lake until we run out of gas
or until we get back to X1. If we don’t make it all the way around the island, then we end
up with a disjointed graph, where one piece is from X1 to the last gas station we are able to
reach before running out of gas and the other being the rest of the graph. For example, let’s
suppose that we make it to X2 , but don’t make it to X3. We have one piece where D1 +
D2 > G1+G2 and one where D3 + D4 + · · ·+D9 < G3+G4+ · · ·+G9. The additional gas
needed to make it from X2 to X3 is contained by the gas stations from X3 to X9. We now
start at the gas station we couldn’t reach, in this case, X3, and move towards X4. Either we
make it to X1 from X3 where we now have the extra gas needed to make it to X3 from X1

or we don’t make it to one of the gas stations between X4 and X1. If we don’t make it to
X1 then we have another disjointed piece of the graph. For example, let’s suppose we make
it from X3 to X5, but don’t have enough gas to make it to X6. We have one piece where D1

+ D2 > G1 + G2 , a piece where D3 + D4 + D5 > G3 + G4 + G5, and a third piece where
D6 +D7 +D8 +D9 < G6 + G7 + G8 + G9. This means the additional gas needed to make
it from X2 to X3 when starting at X1 and to make it from X5 to X6 when starting at X3

is contained by the gas stations X6 to X9. We now consider starting at gas station X6 and
repeat this approach until we eventually are able to make it to X1 , with all of the extra gas
necessary to connect the disjointed pieces of the graph. The gas station at which we start
when we finally reach X1 is the one where the helicopter should drop our car.

Solution by the proposer: We proceed by induction. Clearly if there is just 1 station it can
be done. Suppose we can do n stations placed at any locations. If starting at any station
cannot take us to the next one, than the total amount of gasoline is not enough for the trip,
clearly. Now place one more station. Clearly there is enough gas to get from at least one
station to the next, or we cannot make it around. Say there is enough gas to get from station
i to station i+1. Then remove station i+1 and put all of its gas at station i. We now have
n stations, and by induction there is a solution.

GRE Practice #4: Proposed by Steven Miller, Williams College
One of the greatest challenges students have with the math GRE subject test is that while

they solve a problem, often it is faster to eliminate four wrong answers than find the exact
solution (or at least eliminate a few answers, at which point on average it is advantageous to
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Figure 3. Plot of cos(97x) and x on [0, 1].

guess). Consider the following (a discussion of the answer is included after the solutions to
earlier PME problems), taken from one of the on-line collections of GRE problems (it was
Problem 45). How many positive numbers x satisfy the equation cos(97x) = x? The options
are (a) 1, (b) 15, (c) 31, (d) 49, (e) 96.

Solution: For this problem it’s useful to know that π ≈ 3.14, and thus 2π ≈ 6.28 (this is
also known at τ , and has advocates who celebrate it on June 28th). Since the absolute value
of cosine is at most 1, once x exceeds 1 there cannot be any more solutions. Thus we just
need to look for x ∈ [0, 1].

Note that cosine is periodic; how many periods does cos(97x) go through when x ranges
from 0 to 1? Since 2π ≈ 6.28, we’re looking for how many times 6.28 goes into 97. As a
rough estimate the answer is between 97/7 (which is a little less than 14) and 97/6 (which is
a tad more than 16). We’re thus looking at somewhere between 14 and 17 periods of cosine.
As cosine ranges from 1 down to -1 and then back up to 1 in each period, we expect to
have two solutions to cos(97x) = x in each complete period entirely contained in [0, 1]. Thus
there should be around 28 to 34 solutions; maybe a little higher as we could have a partial
period at the end giving a solution or two, so we expect the answer to be between 28 and
36. Only one choice is in that range, (c) 31. We plot the two functions in Figure 3, and see
the answer is indeed 31.

E-mail address : sjm1@williams.edu

Professor of Mathematics, Department of Mathematics and Statistics, Williams College,

Williamstown, MA 01267
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