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1. Problems: Fall 2020

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is
a solution clearly state the problem number. Solutions to open problems from any year
are welcome, and will be published or acknowledged in the next available issue; if multiple
correct solutions are received the first correct solution will be published (if the solution is not
in LaTeX, we are happy to work with you to convert your work). Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue
has increased. Second, any school that submits correct solutions to at least two problems
from the current issue will be entered in a lottery to win a pizza party (value up to $100).
Each correct solution must have at least one undergraduate participating in solving the
problem; if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2
times in the lottery. Solutions for problems in the Spring Issue must be received by October
31, while solutions for the Fall Issue must arrive by March 31 (though slightly later may be
possible due to when the final version goes to press, submitting by these dates will ensure
full consideration). There was no winning school this time due to the pandemic response.
Also in the last issue one problem solver was accidentally omitted; Problem #1359 was also
solved by Kenneth Davenport (SCI-Dallas, Dallas, PA).

Finally, in this issue we are continuing a new feature. Each year a distinguished mathe-
matician gives the J. Sutherland Frame Pi Mu Epsilon Lecture at MathFest. In 2019 that
speaker was Alice Silverberg, Distinguished Professor at the University of California, Irvine;
her talk is available at , and Problem #1366 is inspired by her lecture. For 2020 the speaker
was supposed to have been Florian Luca from the University of the Witwatersrand; unfor-
tunately MathFest was cancelled due to the response to the pandemic. The abstract for his
talk, Arithmetic and Digits, was: In our recent paper in the Monthly (October, 2019) with
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Figure 1. Pizza motivation; can you name the theorem that’s represented here?

Pante Stănică, we looked at perfect squares which arise when concatenating two consecutive
positive integers like 183184 = 4282 with the smaller number to the left, or 98029801 = 99012

with the larger number to the left. My talk will present variations on this topic with the aim
of providing the audience with examples of numbers which are both arithmetically interest-
ing (like perfect squares) while their digital representations obey some regular patterns. The
examples will not be limited to perfect squares, but will also include other old friends like
Fibonacci numbers and palindromes.

NOTE: DUE TO THE CORONAVIRUS PANDEMIC AND THE
CLOSURE OF COLLEGES WE ARE REPEATING THE PROB-
LEMS FROM SPRING 2020, AS MANY STUDENTS DID NOT
HAVE A CHANCE TO WORK ON THEM WITH THEIR CLASS-
MATES.

#1366 (originally Spring 2020): Proposed by Alice Silverberg (University of California,
Irvine).

Solutions to the following problems would have interesting applications to cryptography
and computer security.

Problem 1: Find a way for four or more parties to create a shared secret (to
use as a secret key in a symmetric key encryption scheme), with one round of
broadcasts through an insecure channel.

Diffie-Hellman key agreement [2] solves this problem for two parties (see below). Pairings
on elliptic curves or abelian varieties lead to a solution for three parties [3]. The problem is
open for four or more parties [1].

The next problem, which was raised in [1], is a group-theoretic approach to Problem 1
that would generalize the solutions that are known in the cases of two and three parties.

Problem 2: For each (or some) fixed integer n ≥ 3, find a large prime number p,
groups G and GT of order p, a generator g of the cyclic group G, and a function

e : Gn → GT

such that:

(a) it is easy to compute e(g1, . . . , gn) for all gi ∈ G,
(b) e(ga11 , . . . , g

an
n ) = e(g1, . . . , gn)a1···an for all gi ∈ G and all integers a1, . . . , an, and
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(c) it is hard to compute

e(g, . . . , g)a1···an+1

for random unknown integers a1, . . . , an+1, even given g, ga1 , ga2 , . . . , gan+1.

A solution to Problem 2 would solve Problem 1, as follows. Suppose we have n+1 parties.
The parties publicly agree on a solution to Problem 2, namely, a prime p, groups G and GT ,
a map e, and a generator g of G that satisfy (a), (b), and (c). For i = 1, . . . , n + 1, party
i chooses a random secret integer ai between 1 and p, computes gai , and broadcasts that
element of the group G. The shared secret is

e(g, . . . , g)a1···an+1 ∈ GT .

All of the n+ 1 parties involved can compute it; the ith party computes it by computing

e(ga1 , . . . , gai−1 , gai+1 , . . . , gan+1)ai ,

which gives the desired result by (b). By (c), it is hard for anyone else to learn this shared
element of the target group GT .

For two parties, let n = 1, take G to be a (large) prime order subgroup of the multiplicative
group of a finite field, let GT = G, and let e be the identity map on G. The above protocol
recovers Diffie-Hellman key agreement. Namely, Alice and Bob publicly share the prime p,
the group G, and a generator g. Alice (respectively, Bob) chooses a random secret integer
a (respectively, b) between 1 and p, computes ga (respectively, gb), and broadcasts it. The
shared secret is gab, which Alice obtains by computing (gb)a and Bob obtains by computing
(ga)b. The security is based on the assumption that G was chosen so that no one else can
compute gab, for random unknown a and b, even if they know g, ga, and gb.

Taking G to be a prime order subgroup of the group of points on a suitable elliptic curve
over a finite field gives Elliptic Curve Diffie-Hellman.

For three parties, let n = 2. Problem 2 can be solved by taking G to be a (large) prime
order subgroup of the group of points on a suitable elliptic curve E over a finite field F , and
letting e be a certain (suitably modified Weil or Tate) pairing associated to E. The group
GT will be a subgroup of the multiplicative group of a certain extension field of the finite
field F .

Beyond that, these problems are an area of current research.
Applications of Problem 2 to key agreement, broadcast encryption, and digital signatures

were given in [1]. That paper also gave evidence that when n ≥ 3 it might be difficult to use
algebraic geometry to find a solution to Problem 2, and therefore it might be productive to
look more broadly than number theory and algebraic geometry for solutions to Problems 1
and 2.
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#1367 (originally Spring 2020; note a solution to this is given below): Proposed
by Thomas Garrity, Steven J. Miller and Chenyang Sun (Williams College).
We say a positive integer is a side-into-hypothesis number if it is both a side of a right
triangle with integer lengths and the hypotenuse of a triangle with integer sides. Thus 5 is
such a number, from the 3–4–5 triangle and the 5–12–13.
(a) Prove or disprove: there are infinitely many side-into-hypothesis numbers.

(b) Prove or disprove: there exists an infinite sequence of positive integers {xn} such that
xn is a side of a right triangle with xn+1 as a hypotenuse.

#1368 (originally Spring 2020): Proposed by Steven J. Miller (Williams College).
Consider an n × n chessboard. It is a famous (and difficult!) problem to place n queens
and maximize the number of squares they do not attack; however, if we only care about the
percentage in the limit then it is significantly easier. Prove that as n → ∞ we can place
the queens in such a way so that 100% of the squares are not attacked. Note this does not
mean every square is safe; it means if s(n) is the maximum number of safe squares, then
s(n)/n2 → 1. Can you obtain good upper and lower bounds for n2 − s(n)?

#1369 (originally Spring 2020): Proposed by Steven J. Miller and Chenyang Sun (Williams
College).
Consider an n×n chessboard. The previous problem is greatly simplified if instead of queens
we place rooks. Determine an optimal placement of n rooks to maximize the number of safe
squares.

#1370 (originally Spring 2020): Proposed by Eugen J. Ionascu (Columbus State Uni-
versity).
Consider three points A, B and C chosen uniformly at random inside of the region (see
Figure 1 below, the yellow region)

Rr,α = {(x, y) ∈ R2|x = t cos θ, y = t sin θ, π ≥ |θ| ≥ α, t ∈ [0, r]},

α = πa, a ∈ [0, 1
2
], r > 0;

(thus we are choosing from the uniform distribution with respect to the area). Show that
the probability that the resulting triangle 4ABC contains the origin O(0, 0) is equal to

Pa =
(1 + a)(1− 2a)2

4(1− a)3
.
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Figure 1

GRE Practice #6 (originally Spring 2020): The following is essentially the famous
German Tank Problem. There are N tanks, labeled 1, 2, . . . , N , and k distinct serial numbers
s1, s2, . . . , sk are observed, with m = max si the largest value. If every subset of size k is
equally likely, what is the best predictor for N as a function of m and k?
(a) mk (b) m(1 + 1/k) (c) m(1− 1/k) (d) m(1 + 1/k)− 1 (e) m(1− 1/k)− 1.

2. Solutions

#1367: Proposed by Thomas Garrity, Steven J. Miller and Chenyang Sun (Williams Col-
lege).
We say a positive integer is a side-into-hypothesis number if it is both a side of a right
triangle with integer lengths and the hypotenuse of a triangle with integer sides. Thus 5 is
such a number, from the 3–4–5 triangle and the 5–12–13.
(a) Prove or disprove: there are infinitely many side-into-hypothesis numbers.

(b) Prove or disprove: there exists an infinite sequence of positive integers {xn} such that
xn is a side of a right triangle with xn+1 as a hypotenuse.

Solution by David E. Manes, Oneonta, NY. Also solved by the Skidmore College
Problem Group.

Note that for each positive integer n, (5n)2 + (12n)2 = (13n)2 and (3n)2 + (4n)2 = (5n)2.
Thus the integer 5n is a side - into - hypothesis number since it is a side in the 5n−12n−13n
right triangle and the hypotenuse in the 3n−4n−5n triangle. Therefore, there are infinitely
many side - into - hypothesis numbers.

For part (b) define the sequence {xn} such that x1 = 3, x2 = 5 and for n ≥ 3,

xn = (xn−1 − 1)

(
xn−1 + 1

2

)
+ 1.

5



We will show that each xn is the side of a right triangle with hypotenuse xn+1. More precisely,
we will show that x2n + (xn+1− 1)2 = x2n+1. Note that the sides (xn, xn+1− 1, xn+1) do define
a triangle for each n ≥ 1. Moreover, by the given example, the result is true for n = 1 and
n = 2. Assume inductively that the result is true for any integer n ≥ 2. Then

x2n+1 + (xn+2 − 1)2 = x2n+1 + x2n+2 − 2xn+2 + 1

= x2n+1 + x2n+2 − 2

[
(xn+1 − 1)

(
xn+1 + 1

2

)
+ 1

]
+ 1

= x2n+1 + x2n+2 − x2n+1 + 1− 2 + 1

= x2n+2.

Therefore, the result is true for n+1 and so by induction each xn is the side of a right triangle
with integer sides (xn, xn+1 − 1, xn+1) and hypotenuse xn+1. This completes the solution.

GRE Practice #6: The following is essentially the famous German Tank Problem. There
are N tanks, labeled 1, 2, . . . , N , and k distinct serial numbers s1, s2, . . . , sk are observed,
with m = max si the largest value. If every subset of size k is equally likely, what is the best
predictor for N as a function of m and k?
(a) mk (b) m(1 + 1/k) (c) m(1− 1/k) (d) m(1 + 1/k)− 1 (e) m(1− 1/k)− 1.

While this problem can be solved through combinatorial manipulations, that is time con-
suming. Instead, let us look at extreme cases and eliminate four of the five answers.

First, (a) is clearly out as if k is large than m will be large (if k ≥ N/2 then m ≥ N/2),
and thus mk will exceed N !

We now come to four answers that are very similar. If we take the special case k = N
then m = N (every tank is observed) and thus our prediction should be N . The answers we
get in this special case are N + 1 for (b), N − 1 for (c), N for (d) and N − 2 for (e), which
suggests (d) as the answer.

We could also look at k = 1 to gain some reasonableness. Note that we will never guess less
than m for the number of tanks, so it makes sense to look at a guess of the form m+g(m, k)
for some function g. As m increases we should predict a higher value of N , so it makes
sense that g is increasing with m. Similarly, if k increases then we’ve observed more tanks
and we’re more confident that the largest observed serial number is close to N , and thus the
boost should be decreasing with k. This leads to guessing g(m, k) = αm/k + β; the answer
turns out to be α = −β = 1. Returning to taking k = 1, it’s likely that our observed m is
around N/2, so we would want to double it. While this eliminates (c) and (e), both (b) and
(d) survive (which is not surprising, as they differ by a constant).

This problem is an excellent example of the power of spending some time thinking about
a problem and getting a feel for the answer.

Email address: sjm1@williams.edu

Professor of Mathematics, Department of Mathematics and Statistics, Williams College,
Williamstown, MA 01267
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