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STEVEN J. MILLER (EDITOR)

1. Problems: Fall 2019

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is
a solution clearly state the problem number. Solutions to open problems from any year
are welcome, and will be published or acknowledged in the next available issue; if multiple
correct solutions are received the first correct solution will be published (if the solution is not
in LaTeX, we are happy to work with you to convert your work). Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue has
increased. Second, any school that submits correct solutions to at least two problems from
the current issue will be entered in a lottery to win a pizza party (value up to $100). Each
correct solution must have at least one undergraduate participating in solving the problem;
if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2 times in
the lottery. This issue’s winner is the Missouri State University Problem Solving Group.
Solutions for problems in the Spring Issue must be received by October 31, while solutions
for the Fall Issue must arrive by March 31 (though slightly later may be possible due to when
the final version goes to press, submitting by these dates will ensure full consideration). After
the Spring 2019 issue went to press we received a correct solution for #1351 from the Cal
Poly Pomona Problem Solving Group.
This is a special themed issue, where all of the proposed problems are joint with my colleague
and co-author Ron Evans.

#1362: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams College).
A weighted penny and a weighted dime are each flipped k times, for fixed k ≥ 4. The

penny has a probability p of landing heads, and the dime has a probability d of landing
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Figure 1. Pizza motivation; can you name the theorem that’s represented here?

heads, where .5 < p < d < 1. Thus the expected numbers of heads obtained for the penny
and dime after the flips are kp and kd, respectively.
Assuming that both expected values kp and kd are integers, prove that the probability

of obtaining exactly kd heads for the dime exceeds the probability of obtaining exactly kp
heads for the penny.

#1363: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams College).
This problem generalizes #1362, and starts off with the same setting. A weighted penny

and a weighted dime are each flipped k times, for fixed k ≥ 4. The penny has a probability
p of landing heads, and the dime has a probability d of landing heads, where .5 < p < d < 1.
Thus the expected numbers of heads obtained for the penny and dime after the flips are kp
and kd, respectively.
We no longer assume kp and kd are integers. Thus, prove that when d − p ≥ 1/k, the

probability of obtaining exactly r(kd) heads for the dime exceeds the probability of obtaining
exactly r(kp) heads for the penny, where r(x) denotes the closest integer to x (rounding
upwards when x is half an odd integer).

#1364: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams College).
(a) Two people are playing pool, which has 15 balls labeled from 1 to 15. On the first turn
someone sinks three of these. What is the probability that none of the three numbers of the
sunk balls are adjacent? Thus if they sink the 4, 8 and 12 that would work, but if they sank
the 4, 8 and 9 it would not.
(b) Assume now they play super-pool, where there are 2020 balls on the table, and now
someone sinks 314 balls on their first turn. What is the probability none of the 314 sunk
have adjacent numbers?
(Bonus: More generally, what would the answer be if there were N balls and they sink k on
their first turn?)

#1365: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams College).
We generalize the previous problem. We have N balls, numbered 1 to N .
(a) Assume exactly k balls are sunk on the first turn. What is the probability that there are
no three consecutive numbers among them?
(b) Assume exactly k balls are sunk on the first turn, so there are N − k that are not sunk.
What is the probability that there are no three consecutive numbers among the k sunk and
also there are no three consecutive numbers among the N − k not sunk?
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GRE Practice #5: From a GRE Practice Exam: Let a, b be positive; determine∫ ∞

0

exp(ax)− exp(bx)

(1 + exp(ax)) · (1 + exp(bx))
dx.

(a) 0 (b) 1 (c) a− b (d) (a− b) log(2) (e) a−b
ab

log(2).

2. Solutions

#1302: Proposed by Steven Finch, Harvard University, Cambridge, MA. Let A, B, C, D
be independent uniform random points on the unit sphere Σ in R3. The points A, B, C
determine a unique disk ∆ inscribed within Σ almost surely. Let Γ denote the oblique cir-
cular cone with base ∆ and apex D. The volume ω of Γ cannot exceed 32π/81. Find the
probability density function for ω in closed-form. Find the first and second moments of ω as
well. Note: The density function here is, in fact, algebraic in ω! This is believed to be rare
for such problems in geometric probability.

Solution by proposer : Assume without loss of generality that the plane containing ∆ in xyz-
space is parallel to the plane z = 0. Let θ denote the angular radius of ∆ relative to the
north pole E = (0, 0, 1); in particular, θ is the angle between vectors A and E. For example,
∆ is the equatorial disk iff θ = π/2; ∆ = {E} iff θ = 0; and ∆ = {−E} iff θ = π.

Assume further WLOG that point D is in the northern hemisphere z > 0. Given θ, the
maximum volume ω = π

3
sin2 θ(1− cos θ) occurs when D = E. Given ω, the largest interval

θ0 ≤ θ ≤ θ1 such that ω ≤ π
3
sin2 θ(1− cos θ) has endpoints

θ0 = arccos ζ0, θ1 = arccos ζ1

where −1 ≤ ζ1 ≤ ζ0 ≤ 1 satisfy uniquely the cubic equation

ω =
π

3

(
1− ζ2

)
(1− ζ) .

Expressions for ζ0, ζ1 are complicated and hence omitted.
Given θ, it is clear from [1] that ω ∼ Uniform

[
0, π

3
sin2 θ(1− cos θ)

]
. Thus the conditional

density of ω|θ is simple. It is more challenging to show that the unconditional density of θ is

3

4
sin3 θ (1− cos θ) , 0 ≤ θ ≤ π

and required details appear in [2] (proof of Theorem 3.3). Integrating the product of the
two densities, we obtain

3

4

3

π

θ1(ω)∫
θ0(ω)

sin θ dθ = −
i 33/2

(
−8π2/3 + 21/3

{
−16π + 9

[
9ω + i

√
(32π − 8ω)ω

]}2/3
)

28/3π4/3
{
−16π + 9

[
9ω + i

√
(32π − 8ω)ω

]}1/3

as the density of ω. From this, E(ω) = 16π/105 and E(ω2) = 32π2/945 follow immediately.
Notes: An alternative proof of Miles’ result [2] can be found in [3]. The points A, B, C,

D also determine a random tetrahedron with mean volume 4π/105 and mean square volume
2/81 [4, 5]. Similar reasoning gives the area density for random triangles inscribing the unit
circle in R2, but elementary evaluation of the corresponding integral seems unlikely [6].
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#1356: Proposed by Greg Oman and Ikko Saito, University of Colorado, Colorado Springs.
Problem. Let f : R → R be a continuous function such that f(0) = 0. For r ∈ R, say that
f is homomorphic at r if f(r + x) = f(r) + f(x) for all x ∈ R. Next, set Hf := {r ∈ R : f
is homomorphic at r}. One can check that Hf is an additive subgroup of R (which may be
assumed in your solution). For the purposes of this problem, say that a subgroup G of R is
realizable if G = Hf for some continuous f : R → R such that f(0) = 0.

(a) Prove that every (additive) cyclic subgroup of R is realizable.
(b) Find all non-cyclic realizable subgroups of R.

Solution by Missouri State University Problem Solving Group, Missouri State
University.

We first show that every subgroup of R is either cyclic or is dense in R.
Let G be any subgroup of R. If G = {0}, then G is cyclic. Otherwise G contains positive

elements, i.e., G ∩ (0,∞) ̸= ∅. Let t = inf(G ∩ (0,∞)).
Case 1: t = 0. Then for every ϵ > 0 there exists g ∈ G such that 0 < g ≤ ϵ. We show

that G is dense by showing that G ∩ (a, b) ̸= ∅ for every open interval (a, b) ⊆ R. Given an
open interval (a, b), take ϵ = (b−a)/2. Then there exists g ∈ G such that 0 < g ≤ ϵ < b−a.
Since g is smaller than the length of (a, b), for some integer k we have kg ∈ (a, b), and also
kg ∈ G since G is a group. This shows that G ∩ (a, b) is nonempty. Therefore G is dense in
R.

Case 2: t > 0. In this case we show G = tZ. First, we have t ∈ G for the following reason.
Suppose t ̸∈ G. Because t = inf{g ∈ G : g > 0}, for any ϵ > 0 we can find g ∈ G such that
t < g < t + ϵ. Also, we can find g′ ∈ G such that t < g′ < g < t + ϵ. Thus 0 < g − g′ < ϵ
and g − g′ ∈ G. Choosing ϵ smaller than t gives a contradiction and therefore t ∈ G. Then
tZ ⊆ G. Let g ∈ G. Choose k ∈ Z such that kt ≤ |g| < (k + 1)t. Now, |g| − kt ∈ G, and
0 ≤ |g| − kt < t. By definition of t, |g| − kt = 0. That is, g = ±kt ∈ tZ.
(a) Let G = tZ be any (additive) cyclic subgroup of R. Consider the function f(x) =
sin(2πx/t), a continuous function f : R → R with period t. We have

f(tn+ x) = sin(2π(tn+ x)/t) = sin(2πn+ 2πx/t) = sin(2πx/t) = f(x)

for every integer n, and it follows that G = Hf .
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(b) Suppose G is a non-cyclic realizable subgroup of R. Then G = Hf is dense in R. Let
s ∈ R. There exists a sequence rn ∈ Hf such that limn→∞ rn = s. Therefore,

f(s+ x) = f( lim
n→∞

(rn + x)) = lim
n→∞

f(rn + x)

= lim
n→∞

f(rn) + f(x)

= f( lim
n→∞

rn) + f(x) = f(s) + f(x)

which shows f is homomorphic at every real number s. This shows Hf = R, and the only
non-cyclic realizable subgroup is R.

#1357: Proposed by Ron Evans (UCSD) and Steven J. Miller (Williams).
Let n be a positive integer. A pin of length n units is dropped randomly onto a large floor

ruled with equally spaced parallel lines 1 unit apart. When it lands, the pin can intersect k
parallel lines, where k is an integer between 0 and n + 1 inclusive. If the center of the pin
lands halfway between two adjacent lines, which value of k is most probable?
Solution by Skidmore Problem Group, Skidmore College.

The solution is

k = 2
⌊n
2

⌋
.

Let us call the family of equally spaced parallel lines F . Let C be the point on the floor
under the center of the pin, and let Γ be the circle centered at C with diameter n. Note
that the number of intersections of the pin with F is even, since C lies halfway between two
adjacent elements. So if n is even, 0 ≤ k ≤ n and if n is odd, 0 ≤ k ≤ n+ 1. Let S0 be the
intersection of the line through C parallel to the elements of F with Γ, and let S1, S2, ..., Sr

be the sequence of intersections with F moving along Γ such that ∠S0CSm < π
2
. Let Sr+1

be the first intersection of Γ with the line through C perpendicular to the elements of F .
Note that for every n, r =

⌊
n
2

⌋
. Note also that every is pin dropped so that an endpoint lies

between Si and Si+1 has k = 2i intersections for i = 0, 1, . . . , r. Due to the symmetry of Γ,
it will suffice to seek the circular sectors with arcs between Si and Si+1 which have the most
possible pin positions. But these positions are determined by their angles with CS0. So let
the measure of ∠S0CSi = αi. We wish to maximize αi+1 − αi, where i = 0, 1, . . . , r, which
will maximize the probability. Now for each of these values of i,

sin(αi) =
i− 1

2
n
2

=
2i− 1

n
.

So,

αi = sin−1

(
2i− 1

n

)
,

which gives,

αi+1 − αi = sin−1

(
2i+ 1

n

)
− sin−1

(
2i− 1

n

)
.

Let us say

αi+1 − αi = f(i).
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Then

f ′(i) =
2

n
√

1−
(
2i+1
n

)2 − 2

n
√
1−

(
2i−1
n

)2
=

2

n

 1√
1−

(
2i+1
n

)2 − 1√
1−

(
2i−1
n

)2
 .

However, (
2i+ 1

n

)2

>

(
2i− 1

n

)2

,

which implies √
1−

(
2i+ 1

n

)2

<

√
1−

(
2i− 1

n

)2

,

giving
2

n
√

1−
(
2i+1
n

)2 >
2

n
√

1−
(
2i−1
n

)2 .
This means f ′(i) > 0, so f is an increasing function which attains its maximum at i = r.
Therefore, the maximal value of f(i) occurs at i = r, that is, k = 2

⌊
n
2

⌋
.

#1359: Proposed by Robert C. Gebhardt, Chester, NJ. Determine the following sums:

(a)
1

1 + 2
− 1

3 + 4
+

1

5 + 6
− 1

7 + 8
+ · · ·

(b)
1

1 · 2
+

1

3 · 4
+

1

5 · 6
+

1

7 · 8
+ · · ·

(c)
1

1 · 2
− 1

3 · 4
+

1

5 · 6
− 1

7 · 8
+ · · ·

Solution by Hongwei Chen, Christopher Newport University. Also solved by Brian
Bradie, Christopher Newport University, Eugen Ionascu, Columbus State Uni-
versity, Ioannis D. Sfikas, Athens, Greece, and Kenneth Davenport.

Solution. (a). The value is
√
2
8
(π + ln(3− 2

√
2)). Notice that the series can be rewritten as

1

3
− 1

7
+

1

11
− 1

15
+ · · · =

∞∑
n=1

(−1)n+1

4n− 1
.

Let

f(x) =
∞∑
n=1

(−1)n+1x4n−1

4n− 1
, |x| < 1.

Since the above power series has the radius of convergence of 1, term-wise differentiating
yields

f ′(x) =
∞∑
n=1

(−1)n+1x4n−2 =
x2

1 + x4
, |x| < 1.
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By the Abel theorem, we find that
∞∑
n=1

(−1)n+1

4n− 1
= f(1) =

∫ 1

0

f ′(x) dx =

∫ 1

0

x2 dx

1 + x4
.

Mathematica gives the claimed answer directly. Here we provide an elementary evaluation:∫ 1

0

x2 dx

1 + x4
=

1

2

∫ 1

0

(x2 + 1) + (x2 − 1)

1 + x4
dx

=
1

2

(∫ 1

0

x2 + 1

1 + x4
dx+

∫ 1

0

x2 − 1

1 + x4
dx

)
=

1

2

(∫ 1

0

1 + 1/x2

(x− 1/x)2 + 2
dx+

∫ 1

0

1− 1/x2

(x+ 1/x)2 − 2
dx

)
=

1

2

(∫ 0

−∞

du

u2 + 2
−
∫ ∞

2

dv

v2 − 2

)
(let u = x− 1/x, v = x+ 1/x)

=
1

2

(
1√
2
arctan−1

(
u√
2

) ∣∣∣∣0
−∞

− 1

2
√
2
ln

(
v −

√
2

v +
√
2

)∣∣∣∣∞
2

)

=

√
2

8
(π + ln(3− 2

√
2)),

where partial fractions is used to evaluate the second integral.
(b). The value is ln 2. Rewrite the series as

∑∞
n=1

1
(2n−1)(2n)

. Let sn be the n-partial sum

of the series. Partial fractions yields

sn = 1− 1

2
+

1

3
− 1

4
+ · · ·+ 1

2n− 1
− 1

2n
.

It is well-known that the above sequence converges to ln 2.
(c). The value is π

4
− 1

2
ln 2. Similar to (b), let Sn be the n-partial sum of the series. Partial

fractions and rearranging the terms yield

Sn = 1− 1

2
− 1

3
+

1

4
+

1

5
− · · ·+ (−1)n+1

(
1

2n− 1
− 1

2n

)
=

(
1− 1

3
+

1

5
− · · ·+ (−1)n+1 1

2n− 1

)
−1

2

(
1− 1

2
+

1

3
− · · ·+ (−1)n+1 1

n

)
.

Invoking the well-known numerical series for π/4 and ln 2, we find that

Sn → π

4
− 1

2
ln 2 as n → ∞.

#1360: Proposed by Stanley Wu-Wei Liu, East Setauket, Long Island, New York.
Cutting a cake, be it round or otherwise, is a fun skill with real-world applications. When

mathematicians work on such dissection problems starting out with a quadrilateral-shaped
cake and whimsically demanding that the constituent pieces be similar polygons (in the
precise Euclidean sense), a lot is known when the number of these similar polygons is chosen
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to be four. Consider the case of an isosceles trapezoid with side-length ratios of
1:1:1:2. There are many fascinating solutions; find at least four partitions of the 1:1:1:2
isosceles trapezoid into four similar polygons.

The inspiration for this problem came from an MIT Puzzle Corner problem (edited by
Professor Allan Gottlieb, NYU) appearing in the July / August 2018 issue of MIT News, in
which Problem J/A 2 (on page 63) is stated as follows:

J/A 2. Dick Hess had sent us the following problem, which he attributed
to Bob Wainwright. The diagram below shows an equilateral [sic] trapezoid
constructed from three equilateral triangles. You are to divide the figure
into four similar pieces of three different sizes (i.e., exactly two pieces are
congruent).

See also https://s3.amazonaws.com/files.technologyreview.com/p/pub/magazine/

mitnews/puzzlecorner/JA18MITPuzzleCorner.pdf, and for more on this problem, includ-
ing readings, generalizations and open problems, email the proposer at swwliu@alum.mit.edu.
Solution by Missouri State University Problem Solving Group, Missouri State
University.

GRE Practice #5: Solution by Steven Miller, Williams College
From a GRE Practice Exam: Let a, b be positive; determine∫ ∞

0

exp(ax)− exp(bx)

(1 + exp(ax)) · (1 + exp(bx))
dx.

(a) 0 (b) 1 (c) a− b (d) (a− b) log(2) (e) a−b
ab

log(2).

Solution: As the integral vanishes when a = b and is positive when a > b, we can eliminate
the first two (there’s also a huge hint from the fact that three of the five answers have a
factor of a− b). For the last three it requires a bit of work.
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One approach is to use units. If x is in meters, then a and b must be in 1/meters, and
the integrand will be in meters. That suggests the fifth answer, (e), as that’s the only
combination of the last three that will have units of meters.
Here’s another way to see this: check extreme values. We know it’s positive if a > b; let’s

send a to infinity and b to zero. If we do that, the numerator is essentially exp(ax), as that
dwarfs the exp(bx).

However, there’s a lot more that we can see. Note that for a large, if we group exp(ax)/(1+
exp(ax)) we see that factor is essentially 1. Thus the integral looks a lot like the integral of
1/(1 + exp(bx)). Actually, we don’t need to send b to zero, we can have b large if we want,
just much smaller than a so the numerator is dominated by the first term. In that case, the
integrand looks a lot like exp(−bx), and if we integrate that from zero to infinity we get 1/b.

So, to recap, if a and b are tending to infinity and a is much larger than b, then the integral
should look like 1/b. Now we win, as only one of the five answers looks like that, the fifth,
as (a − b)/(ab) = 1/b − 1/a. (Note, as a sanity check, that since a is much larger than b,
then 1/b− 1/a is going to be positive, as it should be.)

Thus we are able to eliminate four of the five answers without finding the anti-derivative,
without evaluating the integral! This demonstrates yet again the power of stepping back
and remembering the wisdom of Sherlock Holmes: if you eliminate the impossible, whatever
remains, however improbable, must be true.

Of course, these are just my thoughts on how to tackle this problem. My colleague Ron
Evans has two more. First, let J(a, b) denote the value of the integral. Substituting x/ab for
x in the integral, we see that J(a, b) = J(1/b, 1/a)/ab. This rules out choices (b), (c), and
(d). Since we know the answer is not 0, that leaves only choice (e).

Alternatively, replace the numerator exp(ax)−exp(bx) by (1+exp(ax))−(1+exp(bx)), and
now the integral breaks up into easily evaluated integrals via substitution. This approach is
useful in cases where the GRE has “none of the above” as one of the multiple choices.

Email address: sjm1@williams.edu

Professor of Mathematics, Department of Mathematics and Statistics, Williams College,
Williamstown, MA 01267
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