
PI MU EPSILON: PROBLEMS AND SOLUTIONS: FALL 2023

STEVEN J. MILLER (EDITOR)

1. Problems: Spring 2024

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is
a solution clearly state the problem number. Solutions to open problems from any year
are welcome, and will be published or acknowledged in the next available issue; if multiple
correct solutions are received the first correct solution will be published (if the solution is not
in LaTeX, we are happy to work with you to convert your work). Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue
has increased. Second, any school that submits correct solutions to at least two problems
from the current issue will be entered in a lottery to win a pizza party (value up to $100).
Each correct solution must have at least one undergraduate participating in solving the
problem; if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2
times in the lottery. Solutions for problems in the Spring Issue must be received by October
31, while solutions for the Fall Issue must arrive by March 31 (though slightly later may be
possible due to when the final version goes to press, submitting by these dates will ensure
full consideration). The winning school for this issue is Georgia Southern University.

Figure 1. Pizza motivation; can you name the theorem that’s represented here?

Date: April 1, 2024.
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Each year a distinguished mathematician gives the J. Sutherland Frame Pi Mu Epsilon
Lecture at MathFest. In 2019 that speaker was Alice Silverberg, Distinguished Professor at
the University of California, Irvine; her talk is available at , and Problem #1366 is inspired
by her lecture. For 2020 the speaker was to be Florian Luca from the University of the
Witwatersrand and we were to have a problem based on his talk, but MathFest canceled due
to the covid response; we hope to share such inspired problems again in the future.

#1406: Proposed by Faird Jokar, Shahid Rajaee Teacher Training University, Tehran, Iran.
We denote akak−1 . . . a1 as the number ak × 10k−1 + ak−1 × 10k−2 + · · · + a2 × 10 + a1 for
positive integer k. If a = akak−1 . . . a1 and b = bk′bk′−1 . . . b1 for positive integers k and k′,

then we define âb as the number akak−1 . . . a1bk′bk′−1 . . . b1. It is easy to see that there are

infinitely many square numbers a and b such that âb is square. For instance, 4 and 9 are
two square numbers. By putting 4 and 9 together, we construct 49 which is another square
number. More generally, for every positive integer i, 49 × 102i is a square number which
is constructed by putting 4 and 9 × 102i together, in which both 4 and 9 × 102i are square
numbers. Prove or disprove: there are infinitely many square numbers a and b such that

gcd(a, 10) = gcd(b, 10) = 1, and also âb is square.1

#1407: Proposed by Joe Santmyer, US Federal Government (retired). Finding zeros of
a function and their properties occupies a large literature in mathematics. Many solved
and unsolved problems deal with zeros of a function. Notable statements, such as the
Fundamental Theorem of Algebra and the Riemann Hypothesis, are center stage but many
lesser known results are scattered in the literature.
The problem here was motivated by an exercise on page 155 in Stein and Shakarchi’s Prince-
ton Lectures in Analysis II: Complex Analysis, which is to prove that the entire function
f(z) = ez − z has an infinite number of zeros. If an analytic function that is not identically
zero has an infinite number of zeros then they are countable. Let {an} be the sequence of
zeros of f . What else can be said about the zeros? Prove one can at least say the following.

a.
∞∑
n=1

1
an(1−an)

= 1

b.
∞∑
n=1

1
an(2πim−an)

= 0 where m is a nonzero integer

c.
∞∑
n=1

1
a2n

= −1

d.
∞∑
n=1

1
a3n

= −1
2
.

#1408: Proposed by Ron Evans. There is a long, rich history of trying to find which
equations with integer coefficients have integer solutions (and if there are solutions, deter-
mining them). The famous Pell equation is x2 − dy2 = 1 for d-square free. More generally,

1A couple of years ago, the proposer found the following question, which is a weaker version, in a Persian
website, which was for Professor Madjid Mirzavaziri: Are there infinitely many square numbers a and b such

that gcd(b, 10) = 1, and also âb is square? This website possessed some interesting questions without their
solutions. Unfortunately, this website does not exist now. Professor Mirzavaziri found this question in a
note, but does not remember the reference for that.
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consider x2 − dy2 = q where q is prime. (a) Prove that there are no integer solutions when
(d, q) = (37, 3). (b) Find integer solutions for (d, q) = (79, 5) or show there are none.

#1409: Proposed by Ron Evans and Steven J. Miller (Williams College). As mentioned
in #1409, there is a long, rich history of trying to find which equations with integer coef-
ficients have integer solutions (and if there are solutions, determining them). (a) Find all
integer solutions to 3y2 + 3y + 1 = x3. (b) Prove that 12x3 − 3 is never a square for x > 1.
Hint: Part (a) might be useful.

#1410: Proposed by Kenny B. Davenport, St Petersburg, Florida. The Pell numbers,
defined by P0 = 0, P1 = 1 and Pn+1 = 2Pn+Pn−1, are an interesting sequence of numbers with
numerous properties; they are one of the simplest generalizations of the Fibonacci recurrence
(same initial conditions but now Fn+1 = 1Fn + Fn−1), and arise as the denominators in the
sequence of the best rational approximations to

√
2. Not surprisingly, they satisfy a large

number of interesting relations. Prove

2
n∑

k=1

kPk−1 = nPn+1 − (n+ 1)Pn.

Note: depending on the path you take to the proof, you may be able to generate many other
additional identities, such as

2
n∑

k=1

k2Pk−1 = (n2 + 1)Pn+1 − (n2 + 2n)Pn − 1.

More generally, though you are only asked to prove the identity for the sum of k times Pk−1,
can you conjecture what the shape of the answer should be for the sum of kd times Pk−1?

The following text is motivation for the next two problems. Harmonic numbers Hn =
n∑

k=1

1
k

have attracted the interest of mathematicians dating at least back to Euler; see for example

• Bailey, D., Borwein, J., Girgensohn, R., Experimental evaluation of Euler sums,
Experimental Math., 3 (1994), 17–30.

• Borwein, D., Borwein, J., On some intriguing sums involving ζ(4), Proc. Amer.
Math. Soc., 123 (1995), 1191-1198.

• Chen, H., Evaluations of some Euler sums, J. Integer Seq., 9 (2006), Article 06.2.3.
• Chen, H., Excursions in Classical Analysis, Mathematical Association of America,
Inc., 2010.

• Gradshtĕin, Ryzhik, I. M., Jeffrey, A. “Table of Integrals, Series and Products”,
Academic Press, p. 544, 1994.

• Riordan, J., “Combinatorial Identities”, John Wiley & Sons, Inc., 1968.
• Spieß, J., Some identities involving harmonic numbers, Math. of Comp., Vol. 55, No.
192, Oct. 1990, 839-803.

• Spiegel, M. R., “Mathematical Handbook”, Schaum’s Outline Series, McGraw-Hill
Book Company, 1968.
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These references demonstrate many beautiful formulas contain Hn. There continues to be
active research in harmonic numbers and their generalizations as the websites

a. Open Problem
b. Generalized Harmonic Numbers and Combinatorial Sequences
c. Euler Type Sums of Harmonic Numbers
d. Generalized Harmonic Numbers
e. q-Harmonic Numbers
f. Generating Functions of Harmonic Numbers
g. Harmonic Numbers and Integrals

illustrate. The references and websites show the interplay between analysis, combinatorics
and number theory that characterizes the study of harmonic numbers. The problems posed
here give you an opportunity to experience this interplay. You are ask to prove two formulas.

One contains Hn and the other a harmonic like value hn =
n∑

k=1

1
2k−1

.

#1411: Proposed by Joe Santmyer, US Federal Government (retired)
With the aide of tables and technology (for example, Mathematica) show that

∞∑
i=0

i∑
j=0

(−1)i+j

(
i

j

)
Hj+1

j + 1
=

π2

12
.

#1412: Proposed by Joe Santmyer, US Federal Government (retired)
With the aide of tables and technology (for example, Mathematica) show that

∞∑
i=0

i∑
j=0

(−1)i+j

(
i

j

)
hj+1

j + 1
= [sinh−1(1)]2.

GRE Practice #13: The following is inspired by a practice SAT problem, and the thought
process of Cameron Miller in solving it. Let f(x) = ax4 + bx2 + c, with f(0) = 1, f(1) = −3
and f(2) = 9. What is f(−1)?
(a) -2 (b) -3 (c) -4 (d) -5 (e) -6.

2. Solutions

#1375: Proposed by Charles Audet, Ecole Polytechnique de Montréal.
A collection of n squares are placed side-by-side. They occupy an area greater than or equal
to 1, and the sum of their side lengths does not exceed an integer k ≤ n. Show that there
are k squares whose sum of side lenghts is greater than or equal to 1.
Solution by Drew Middleton, Ariana Allgood, Andrew Hill, Kendall Bearden, Samford Prob-
lem Solving Group.

The conclusion is trivially true if the largest piece has a side length greater than one, so
without loss of generality, it suffices to study the case when each square side length is less
than one. Consider a collection of n squares placed side by side. We reorder these squares
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by side length, so that X1 ≥ X2 ≥ . . . ≥ Xn where Xi denotes the side length of the ith
square. With this notation we are given the following:

1 ≥ X1 ≥ X2 ≥ · · · ≥ Xn > 0, (2.1)

X2
1 +X2

2 + · · ·+X2
n ≥ 1, (2.2)

X1 +X2 + · · ·+Xn ≤ k ≤ n, (2.3)

and we wish to show

1 ≤ X1 +X2 + · · ·+Xk. (2.4)

We note that (2.1) follows from our notation along with X1 > 1 implying (2.4). Hence we
assume 1 ≥ X1. Define the mth partial sum

Sm =
m∑
i=1

X2
i .

Using (2.1), (2.2), and (2.3) we have the following

1 ≤ Sk +
n∑

i=k+1

X2
i

≤ Sk +Xk

n∑
i=k+1

Xi

≤ Sk +Xk(k −
k∑

i=1

Xi)

= Sk +Xk

k∑
i=1

(1−Xi)

≤
k∑

i=1

(X2
i +Xk(1−Xi))

≤
k∑

i=1

(X2
i +Xi(1−Xi))

=
k∑

i=1

Xi.

Thus (2.4) is shown.

#1399: Proposed by Zhongxue Lü (Jiangsu Normal University) and Steven J. Miller (Williams
College). This problem is inspired from an observation in 2021 (due to the backlog of prob-
lems it is only being published now), where 2021 is formed by writing two consecutive integers
one after the other; in other words it is of form n·10k+(n+1) where k is the number of digits
of n and n has leading digit non-zero and is not all 9’s. We call such integers 2-adjacent
joined numbers. Note we do not consider 102 or 10000 such numbers (even though the first
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could be written as 01 ∗ 102 + 02 and the second as 99 ∗ 102 + 100). How many 2-adjacent
joined numbers are there less than 10100?

Solution by Daniel Podzunas, Western New England University. Also solved by the Problem
Solving Group at Ashland University.

Notice the defined form n · 10k + (n+ 1) only results in numbers with an even amount of
digits. In particular, n · 10k and n + 1 will make up the first k digits and the following k
digits of the number, respectively. Fix any k, we want to count how many valid n’s there
are to form a 2-adjacent joined number.

k = 1 k = 2 k = 3 k = 4 k
12 1011 100101 10001001 · · · [10k−1] · 10k + ([10k−1] + 1)
23 1112 101102 10011002 · · · · · ·
34 1213 102103 10021003 · · · · · ·
45 1314 103104 10031004 · · · · · ·
56 · · · · · · · · · · · · · · ·
67 9697 996997 99969997 · · · · · ·
78 9798 997998 99979998 · · · · · ·
89 9899 998999 99989999 · · · [10k − 2] · 10k + ([10k − 2] + 1)

As we observe in the table that a valid n ranges from 10k−1 to 10k − 2, we could form

(10k − 2)− (10k−1) + 1 = 10 · 10k−1 − 10k−1 − 1 = 9 · 10k−1 − 1

many 2-adjacent joined numbers for any given k. Since the largest number we are looking
at is 10100, we are adding up to k = 50. Thus, there are

50∑
k=1

9 · 10k−1 − 1 = 99999999999999999999999999999999999999999999999999− 50

= 99999999999999999999999999999999999999999999999949

2-adjacent joined numbers.

Note: the following approach was sent as an alternative to the counting by cases. The n’s of
any length can be considered as all having 50 digits with possibly many leading zeros. Then
out of the 1050 choices for 50 digit numbers we must exclude the one that is all 0’s, and the
50 that have leading zeros followed by all 9’s. Hence there are 1050 − 51 choices for n.

#1401: Proposed by Hongwei Chen (Christopher Newport University). Let m be a positive
integer. For |q| < 1, prove

∞∑
n=0

cos

(
(2n+ 1)π

m

)
qn(n+1)/2 = cos(π/m)

∞∏
n=1

(1 + 2 cos(2π/m)qn + q2n)(1− qn). (2.5)
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Use this result to deduce the recent Monthly problem 12289:

∞∑
n=0

2 cos

(
(2n+ 1)π

3

)
qn(n+1)/2 =

∞∏
n=1

(1− q6n−1)(1− q6n−5)(1− qn). (2.6)

Solution by the Missouri State University Problem Solving Group.

Given Jacobi’s triplet product identity

∞∑
n=−∞

znqn
2

=
∞∏
n=1

(1 + zq2n−1)(1 + z−1q2n−1)(1− q2n),

we set z = qe2τi for some τ with i2 = −1, yielding

∞∑
n=−∞

qn
2+ne2nτi =

∞∏
n=1

(1 + q2ne2τi)(1 + q2n−2e−2τi)(1− q2n)

= (1 + e−2τi)
∞∏
n=1

(1 + q2ne2τi)(1 + q2ne−2τi)(1− q2n)

= (1 + e−2τi)
∞∏
n=1

(1 + q2n(e2τi + e−2τi) + q4n)(1− q2n)

= (1 + e−2τi)
∞∏
n=1

(1 + 2 cos(2τ)q2n + q4n)(1− q2n). (2.7)

Multiplying both sides of (2.7) by eτi, we have

∞∑
n=−∞

qn
2+ne(2n+1)τi = (eτi + e−τi)

∞∏
n=1

(1 + 2 cos(2τ)q2n + q4n)(1− q2n)

= 2 cos τ
∞∏
n=1

(1 + 2 cos(2τ)q2n + q4n)(1− q2n). (2.8)

On the left-hand side of (2.8), we notice that the terms with n = −k and n = k − 1 are
conjugate for all integer k. Using Euler’s identity, we have

∞∑
n=−∞

qn
2+ne(2n+1)τi =

∞∑
n=1

2qn
2+n cos ((2n+ 1)τ) . (2.9)

Combining (2.8) and (2.9), we have

∞∑
n=1

qn
2+n cos ((2n+ 1)τ) = cos τ

∞∏
n=1

(1 + 2 cos(2τ)q2n + q4n)(1− q2n). (2.10)

Finally, in (2.10), replacing q by
√
q and replacing τ by π/m, we obtain (2.5).
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Next, we will derive (2.6) from (2.5). Setting m = 3, (2.5) becomes

∞∑
n=0

2 cos

(
(2n+ 1)π

3

)
qn(n+1)/2 =

∞∏
n=1

(1− qn + q2n)(1− qn)

=
∞∏
n=1

1 + q3n

1 + qn
(1− qn) =

∏∞
n=1(1 + q3n)∏∞
n=1(1 + qn)

∞∏
n=1

(1− q2n−1)
∞∏
n=1

(1− q2n)

=
∞∏
n=1

(1 + q3n)
∞∏
n=1

(1− q2n−1)
∞∏
n=1

(1− qn)

=
∞∏
n=1

(1 + q3n)
∞∏
n=1

(1− q6n−3)
∞∏
n=1

(1− q6n−1)(1− q6n−5)
∞∏
n=1

(1− qn). (2.11)

However,

∞∏
n=1

(1 + q3n)
∞∏
n=1

(1− q6n−3) =
∞∏
n=1

(1 + q3n)
∞∏
n=1

(1− q3(2n−1))

=
∞∏
n=1

(1 + q3n)
∞∏
n=1

(1− q3(2n−1))(1− q3(2n))

1− q3(2n)

=
∞∏
n=1

(1 + q3n)

∏∞
n=1 (1− q3n)∏∞
n=1(1− q6n)

= 1. (2.12)

Substituting the result in (2.12) to (2.11), we get

∞∑
n=0

2 cos

(
(2n+ 1)π

3

)
qn(n+1)/2 =

∞∏
n=1

(1− q6n−1)(1− q6n−5)(1− qn).

#1404: Proposed by Leo Hong, University of North Carolina at Charlotte. Define a great
number as a 10 digit number where each digit from 0 to 9 inclusive is used once and only
once. (1) Does there exist a great number G whose double is also great? (2) How many
great numbers G are there whose double is also great?
Solution by Jesús Sistos (student) and the Eagle Problem Solvers, Georgia Southern Univer-
sity, Statesboro, GA and Savannah, GA.

There exist many such numbers. For example, G = 4, 560, 172, 893 is great and 2G =
9, 120, 345, 786 is also great. In total there are 184, 320 great numbers whose double is also
great. For brevity, we will call such numbers doubly great.
We analyze this doubling digit by digit. Doubling is localized in the sense that carrying

does not have any effect on digits that are not immediately to the left of the digit generating
the carryover. (Notice that this is not the case when multiplying by a larger integer, such
as 3: in the product 35 · 3 = 105, the carryover from tripling the units digit 5 extends two
digits to the left.) When doubling a number, a digit generates a carryover if and only if the
digit is an element of C = {5, 6, 7, 8, 9}.
In a great number, we say that a digit is a giver if it is an element of C. Moreover, we

say that a digit is a receiver if it is to the left of a giver. Because all great numbers have
exactly 10 digits, the leftmost digit of a doubly great number cannot be a giver, since that
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would generate an additional (eleventh) digit. By definition, the rightmost digit cannot be
a receiver, since it is not to the left of any digit.

Notice that after doubling, a 0 digit becomes either a 0 or a 1, depending on whether the
original 0 digit is a receiver; the same is true for the digit 5. Indeed, the pairs {0, 5}, {1, 6},
{2, 7}, {3, 8}, and {4, 9} generate elements of a common pair of digits: respectively, {0, 1},
{2, 3}, {4, 5}, {6, 7}, and {8, 9}. Since all ten digits must arise from the doubling of a doubly
great number, exactly one number in each pair is a receiver. For example, the pattern 3586
cannot appear in any doubly great number because both 3 and 8 are receivers, and hence
would generate the same digit, 7, when doubled.

For convenience, instead of counting individual doubly great numbers, we will count doubly
great cycles; that is, cyclic arrangements of 10-digit integers. Formally, these are equivalence
classes of doubly great numbers under the relation of cyclic shifts. We can cut a cycle by
choosing an initial digit, and then reading the digits clockwise, starting at the cut. For a
doubly great number, we cannot cut a cycle at 0, or at any digit in C, since the leftmost
digit of a doubly great number can be neither 0 nor a giver. Therefore, each doubly great
cycle corresponds to exactly four doubly great numbers.

For example, our original doubly great number G = 4, 560, 172, 893 can be turned into
a doubly great cycle by adjoining its leftmost and rightmost digits in a cycle, which we
denote [4560172893]. We may then cut this cycle at any of the digits in {1, 2, 3, 4} to obtain
three additional doubly great numbers: in this case, 1, 728, 934, 560; 2, 893, 456, 017; and
3, 456, 017, 289.
To count the number of doubly great cycles, we first say that an ordered list of contiguous

giver digits in a cycle is a block if it is of maximal size. For example, in the cycle [0123456789],
the digits 678 are givers, but they do not form a block because they are contained in a larger
set of contiguous givers, namely 56789, which is the only block in [0123456789]. In the cycle
[4560172893], there are three blocks; namely, 56, 7, and 89.

The distribution of the blocks will determine the behavior of the intersection of the set of
givers and the set of receivers. Notice that in a block, all digits that are not the rightmost
digit in the block are also receivers. By associating each block with its rightmost digit, we
observe that the number of blocks is the same as the number of givers that are not also
receivers. We break up the possibilities by looking at the number of blocks in each cycle;
illustrations are given for each case.

(1) If there is only one block, there is only one possible distribution. The five givers are
contiguous, as are the five non-givers.

(2) If there are two blocks, there are two numerical partitions of 5 into 2 parts: 1+4 and
2+3. For each one one of those, we separate the two blocks with at least one of the 5
non-givers. In other words, we fill the blanks in B1 B2 with the 5 non-givers,
with at least one in each blank. There are four ordered numerical partitions of 5 into
two parts: 1 + 4, 2 + 3, 3 + 2, and 4 + 1, giving a total of 2 · 4 = 8 distributions with
two blocks.
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(3) With three blocks, there are two numerical partitions of 5 into three parts: 1 + 1+ 3
and 1 + 2 + 2. For each one, we fill the blanks in B1 B2 B3 with the 5
non-givers, with at least one in each blank. There are 6 ordered numerical partitions
of 5 into three parts:1 + 1 + 3, 1 + 3+ 1, 3 + 1+ 1, 1 + 2+ 2, 2 + 1+ 2, and 2 + 2+ 1,
giving a total of 2 · 6 = 12 distributions with three blocks.

(4) With four blocks, there is only one numerical partition of 5 into four parts, namely
1+ 1+ 1+ 2. We fill the blanks in B1 B2 B3 B4 with the 5 non-givers,
with at least one in each blank. There are 4 ordered partitions of 5 into four parts:
1 + 1 + 1 + 2, 1 + 1 + 2 + 1, 1 + 2 + 1 + 1, and 2 + 1 + 1 + 1, giving a total of 4
distributions with four blocks.

(5) If there are five blocks, then there is only one distribution, where the givers strictly
alternate with the non-givers.
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Of these, only the case with 5 blocks has rotational symmetry, so we will consider that
case separately. For the others, let B represent the number of blocks. From our discussion
above, B counts the number of givers that are not receivers; thus 5− B counts the number
of digits that are both givers and receivers. Since there are 5 givers and 5 receivers, B also
counts the number of receivers that are not givers, and 5 − B counts the number of digits
that are neither givers nor receivers.

Because each giver is paired one non-giver, and exactly one element in each pair is a
receiver, selecting the set of givers that are also receivers completely determines all four sets.
For each possible value of B, the number of doubly great cycles with B blocks is given by

D(B)

(
5

5−B

)
B!(5−B)!B!(5−B)!,

where D(B) is the number of distributions with B blocks, the binomial coefficient counts
the number of ways of choosing digits that are both givers and receivers, and each of the
factorials counts the number of ways to order each of the disjoint sets in the cycle.

For the remaining case where B = 5, the receivers must be {0, 1, 2, 3, 4} and the cycle must
strictly alternate between givers and receivers. There are 5!5! ways to order both sets, but
each cycle is counted 5 times because of the rotational symmetry, so the number of doubly
great cycles with 5 blocks is 5!4!. Thus, the total number os doubly great cycles is

1

(
5

4

)
(1!4!)2 + 8

(
5

3

)
(2!3!)2 + 12

(
5

2

)
(3!2!)2 + 4

(
5

1

)
(4!1!)2 + 5!4! = 46, 080,

and the total number of doubly great numbers is 4 · 46, 080 = 184, 320.

We also provide the solution of the proposer. Define the “corresponding digit” of a
digit a in a number N be the digit in N with the same place value as the digit a.
Define an f-digit as any digit, when multiplied by 2, will regroup. In other words, any

digit from one to five. Then pairing f-digits to non f-digits based on the units digit of their
double, the pairs would be 0-5, 1-6, 2-7, 3-8, and 4-9.

From here, each digit d = 2q + r (where 2 is the divisor, q is the quotient, and r is the
remainder) in 2G can be generated by letting the corresponding digit in G be either q or the
f-digit q is paired with, q + 5, while r determines whether or not there is regrouping from
the corresponding digit to the right of d (or another way to put it, whether or not this is a
f-digit).

This means we could first place the f-digits in the last 9 places of G, then for any f-digit
that isn’t directly in front of another f-digit, its non f-digit pair would be placed directly
in front of an f-digit. So to show that for any placement of the f-digits results in a valid
placement, we just need to show the number of f-digits not in front of another f-digit is equal
to the number of spaces directly in front of an f-digit after placing only f-digits.

Define a “clump” as any group of adjacent f-digits. Say there are c clumps in G. Then, for
any clump, the rightmost f-digit in the clump is the only one not directly in front of another
f-digit, and therefore there are exactly c such f-digits. The number of spaces directly in front
of an f-digit is also c- the places in front of of clumps, as all the other spaces in front of an
f-digit are already occupied by other f-digits. So now we have shown that the number of
f-digits not in front of another f-digit is exactly equal to the number of empty spaces in front
of an f-digit, and so for any placement of f-digits, we can place the non f-digits accordingly.
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This means there obviously exists a solution (such as 1023456789), and multiple solutions.
We see we can split this into cases based on c, the number of clumps. We can first factor

out the 5! for the order of the f-digits. Then, there will be
(

4
c−1

)
possible ways to split the

clumps into c clumps. Now, we can multiply by c! for the ways to permute the non f-digits
directly to the left of clumps. Let such a digit be called attached.
Now, we will have c clumps with attached digits directly in front of them, along with

5 − c non-attached non f-digits, so what is left to do is to arrange these 5 groups of digits.
Because the groups of clumps already have an ”order”, we are just permuting the non
attached digits, so we have 5Pc. After plugging in the values of c from one to five, we get
120 + 480 + 720 + 480 + 120 = 1920, which after multiplying by 4

5
to take away possibilities

which start with zero, we get 184320 as our final solution.

#1405: Proposed by Steven J. Miller (Williams College), Rajaram Venkataramani and
Anand Mohanram. Let p, p + 2 be odd twin primes at least 5; for example 5 and 7, 71 and
73, or 71,733,689 and 71,733,691. Multiply the two primes, and sum the digits. If the sum is
not a one digit number, sum the digits again, and keep doing this until a one digit number
arises. For example, for our three pairs we get 5 and 7 yields 35, so the digit sum is 8, while
71 and 73 has a product of 5,183 whose digit sum is 17 whose digit sum is 8, and the last
pair’s product is 5,145,722,281,016,099 is 62 which then gives a digit sum of 8. Is this a
coincidence or will we always end with an 8?
Solution by Dylan Laramee and Daniel Podzunas, Western New England University. Also
solved by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and Sa-
vannah, GA.

We first show that if p, p + 2 are odd twin primes at least 5, then their product x is
congruent to 8 modulo 9. Notice that any integer must be expressed in the form of either
3n, 3n + 1, or 3n + 2 for some n ∈ N. Since p = 3n ≥ 5 cannot be prime and p = 3n + 1
implies p+2 = 3n+3 which cannot be prime, we know that p must be in the form of 3n+2
for some n ∈ N. Therefore,

x = p(p+ 2) = (3n+ 2)(3n+ 4) = 9n2 + 18n+ 8 ≡ 8 mod 9.

Secondly, we show that if x ≡ 8 mod 9, then its repeated digital sum must be 8 as well.
Let x =

∑n
d=1 ad · 10d−1 with a1 ̸= 0 and S(x) =

∑n
d=1 ad be the digital sum of x. By

observing

x =
n∑

d=1

ad · 10d−1 ≥
n∑

d=1

ad = S(x),

we notice that x > S(x) > (S◦S)(x) > (S◦S◦S)(x) . . . is strictly decreasing until the values
drop to a single digit number. Let N be the first natural number such that (S ◦ · · · ◦ S︸ ︷︷ ︸

N -times

)(x)

is single-digit. Using the binomial theorem to expand 10d−1 as (9 + 1)d−1 implies

x =
n∑

d=1

ad · (9 + 1)d−1 ≡
n∑

d=1

ad · (1)d−1 = S(x) mod 9
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and therefore x ≡ S(x) ≡ (S ◦ S)(x) ≡ (S ◦ S ◦ S)(x) ≡ . . . ≡ (S ◦ · · · ◦ S︸ ︷︷ ︸
N -times

)(x) mod 9.

Finally, we are able to conclude that x ≡ 8 mod 9 implies

8 ≡ x ≡ (S ◦ · · · ◦ S︸ ︷︷ ︸
N -times

)(x) mod 9

as needed.

GRE Practice #13:
GRE Practice #13: The following is inspired by a practice SAT problem, and the thought
process of Cameron Miller in solving it. Let f(x) = ax4 + bx2 + c, with f(0) = 1, f(1) = −3
and f(2) = 9. What is f(−1)?
(a) -2 (b) -3 (c) -4 (d) -5 (e) -6.

The answer is (b) -3. We could find a, b and c as we have three equations and three unknowns;
a little algebra (or linear algebra) yields f(x) = 2x4−6x2+1, and thus f(−1) = 2−6+1 = −3.
A faster solution however is to note that f(x) = f(−x) as we have f depends on only x2

(i.e., it is an even function). Thus f(−1) = f(1), and we are given f(1) = −3 and thus
f(−1) = −3. The key point here, for many problems, focus on what you are asked to answer.
Frequently there are many paths to a right answer. If we are going to evaluate f at many
points, it is necessary to find the coefficients; however, if we just need it at one special point,
while we can find the coefficients we may not need to. This is somewhat similar to some
Lagrange multiplier problems, where often in solving ∇f(x1, . . . , xn) = λ∇g(x1, . . . , xn) and
g(x1, . . . , xn) = 0 we do not need to find λ explicitly. It is needed so we have n+1 equations
in n+1 unknowns, but often one takes ratios that eliminates the λ’s as we progress to finding
the candidates (x1, . . . , xn).

Email address: sjm1@williams.edu

Professor of Mathematics, Department of Mathematics and Statistics, Williams College,
Williamstown, MA 01267
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