
PI MU EPSILON: PROBLEMS AND SOLUTIONS: FALL 2024

STEVEN J. MILLER (EDITOR)

1. Problems: Fall 2024

This department welcomes problems believed to be new and at a level appropriate for
the readers of this journal. Old problems displaying novel and elegant methods of solution
are also invited. Proposals should be accompanied by solutions if available and by any
information that will assist the editor. An asterisk (*) preceding a problem number indicates
that the proposer did not submit a solution.

Solutions and new problems should be emailed to the Problem Section Editor Steven
J. Miller at sjm1@williams.edu; proposers of new problems are strongly encouraged to use
LaTeX. Please submit each proposal and solution preferably typed or clearly written on a
separate sheet, properly identified with your name, affiliation, email address, and if it is
a solution clearly state the problem number. Solutions to open problems from any year
are welcome, and will be published or acknowledged in the next available issue; if multiple
correct solutions are received the first correct solution will be published (if the solution is not
in LaTeX, we are happy to work with you to convert your work). Thus there is no deadline
to submit, and anything that arrives before the issue goes to press will be acknowledged.
Starting with the Fall 2017 issue the problem session concludes with a discussion on problem
solving techniques for the math GRE subject test.

Earlier we introduced changes starting with the Fall 2016 problems to encourage greater
participation and collaboration. First, you may notice the number of problems in an issue
has increased. Second, any school that submits correct solutions to at least two problems
from the current issue will be entered in a lottery to win a pizza party (value up to $100).
Each correct solution must have at least one undergraduate participating in solving the
problem; if your school solves N ≥ 2 problems correctly your school will be entered N ≥ 2
times in the lottery. Solutions for problems in the Spring Issue must be received by October
31, while solutions for the Fall Issue must arrive by March 31 (though slightly later may be
possible due to when the final version goes to press, submitting by these dates will ensure
full consideration). The winning school from the Fall problem set is Saint Bonaventure
University.

#1414: Proposed by Kenneth Davenport. Let γ be the Euler–Mascheroni constant, defined
by

γ := lim
n→∞

(
− log n −

n∑
k=1

1

k

)
.

Date: October 31, 2024.
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Figure 1. Pizza motivation; can you name the theorem that’s represented here?

Prove that

1

2n+1
≤ γ −

n log 2 +
n−1∑
k=0

2k−n+1

2k−1∑
j=0

1

2j + 1

 ≤ 1

2n
.

In particular, we have a very accurate approximation for γ.

#1415: Proposed by Kenneth Davenport. Define the Pell numbers by P0 = 0, P1 = 1, and
Pn+2 = 2Pn+1 +Pn. Prove or disprove: the sum of any 8 consecutive Pell numbers equals 24
times the fifth number in the sequence.

#1416: Proposed by Serban Raianu, California State University, Dominguez Hills, and Joel
Feldman, University of British Columbia. (Note: We are trying something new with this
problem, namely having a long introduction to motivate why someone should be interested in
this!) This problem gives you an opportunity to win an integral solving competition against
computer algebra systems.

Problem Q[25] of §3.3 in CLP-4 at https://personal.math.ubc.ca/*CLP/ asks for the
evaluation of the surface integral ∫∫

S

xy2 dS,

where S is the portion of the sphere x2 + y2 + z2 = 2 for which x ≥
√

y2 + z2. This can be
easily integrated, e.g., by parametrizing S as the graph of a function x = f(y, z), or by using
the following parametrization in scrambled (y replacing x, z replacing y, and x replacing z)
spherical coordinates:

r(ϕ, θ) =
〈√

2 cos(ϕ) ,
√
2 sin(ϕ) cos(θ) ,

√
2 sin(ϕ) sin(θ)

〉
.

The solution to problem Q[25] of §3.3 in the book CLP-4, referenced above, warns that
parametrizing S in standard spherical coordinates

r(ϕ, θ) =
〈√

2 sin(ϕ) cos(θ) ,
√
2 sin(ϕ) sin(θ) ,

√
2 cos(ϕ)

〉
,

makes the evaluation of the integral very complicated. This happens because with the stan-
dard spherical coordinates parametrization the domain of the parameters is not rectangular,
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and we get one of the following intimidating double integrals:

I1 =

∫ 3π
4

π
4

∫ cos−1
(

csc(x)√
2

)
− cos−1

(
csc(x)√

2

) sin4(x) cos(y) sin2(y) dy dx,

I2 =

∫ π
4

−π
4

∫ π−sin−1
(

sec(y)√
2

)
sin−1

(
sec(y)√

2

) sin4(x) cos(y) sin2(y) dx dy,

I3 =

∫ π
4

−π
4

∫ π−cos−1

(√
1−tan2(y)√

2

)
cos−1

(√
1−tan2(y)√

2

) sin4(x) cos(y) sin2(y) dx dy.

Computer algebra systems have trouble symbolically integrating these integrals, especially
the last two, precisely because the integration domain is not rectangular. Can you evaluate
I1 and I2 and I3?

As a first hint, integration by parts can help in the evaluation of I2 and I3.
The last part of this problem can also be viewed as a second hint that might help you

evaluate the three integrals above. Show that∫ π
2

π
4

√
2 sin(x)(1− 2 cos2(x))

3
2 dx =

∫ π
4

0

tan4(y) sec2(y)√
1− tan2(y)

dy

=

∫ π
2

0

sin4(z) dz, (1.1)

by using just one substitution of the form

f(old variable) = g(new variable)

f ′(old variable) d(old variable) = g′(new variable) d(new variable)
(1.2)

where f and g are bijective functions, for each of the three pairs of integrals in (1.1). (The
first integral appears in the computation of I1, and the second integral appears in the com-
putations of I2 and I3. This second part of this problem is not hard, the challenge here is
to prove the three equalities of the pairs of integrals in (1.1) using just one substitution per
equality.)

Here is some discussion about the substitution (1.2). Call the old variable x and the new
variable u. Then the first equation of (1.2) implicitly defines the function u(x) by requiring
that f(x) = g

(
u(x)

)
for all x, and the second equation of (1.2), f ′(x) dx = g′(u) du, is a

memory aid which provides us with an easy way to remember that∫
h
(
u(x)

)
f ′(x) dx =

∫
h(u) g′(u) du

∣∣∣
u=u(x)

This is much like, when, in the course of solving the separable differential equation dy
dx

=

f(x) g(y), we use the memory aid dy
g(y)

= f(x) dx as any easy way to remember that a

function y(x) which obeys ∫
dy

g(y)

∣∣∣∣
y=y(x)

=

∫
f(x) dx

also satisfies dy
dx

= f(x) g(y).
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#1417: Proposed by Ivan Hadinata, Gadjah Mada University. Consider any 2024 distinct
positive integers a1 < a2 < · · · < a2024 ≤ 293, 335. Define

A := {(i, j) : i > j; i, j ∈ {1, 2, · · · , 2024}}
and

f(i, j) := |ai − aj| for all (i, j) ∈ A.

Show that there are at least 8 distinct pairs (i1, j1), (i2, j2), · · · , (i8, j8) ∈ A such that

f(i1, j1) = f(i2, j2) = · · · = f(i8, j8).

#1418: Proposed by Steven J. Miller, Williams College. Anyone who knows me well knows
that I have a daily step challenge with a couple of my friends. My greatest month was
averaging over 50,000 steps a day, which is the inspiration for this (and the next) problem.
(a) Consider someone who averages exactly 50,000 steps in a 30 day month. Must there be
a 20 day window (i.e., 20 consecutive days) where they walked at least 1 million steps? (b)
What if we consider the days of the month to lie on a circle, so now day 30 is next to both
days 29 and 1?

#1419: Proposed by Steven J. Miller, Williams College. Consider the framework of the
previous problem, where someone walks on average 50,000 steps a day for a 30 day month.
Is there a certain minimum steps per day, m, such that if they walk at least m steps a day
then they must have walked at least one million steps during 20 consecutive days? If yes,
what is the smallest m that works? Extra credit: if they walk on average A steps per day,
with A ≥ 50, 000, what would mA be to ensure they walk at least one million steps in a 20
day window?

GRE Practice #14: Let f : R+ → R+ satisfy f(f(x)) = 6x− f(x). Find f(x). (This is a
modification of Problem A5 from the 1988 Putnam Exan.)
(a) 6 + x (b) 6x (c) 2x (d) x− 2 (e) 3x.

2. Solutions

#1407: Proposed by Joe Santmyer, US Federal Government (retired). Finding zeros of
a function and their properties occupies a large literature in mathematics. Many solved
and unsolved problems deal with zeros of a function. Notable statements, such as the
Fundamental Theorem of Algebra and the Riemann Hypothesis, are center stage but many
lesser known results are scattered in the literature.
The problem here was motivated by an exercise on page 155 in Stein and Shakarchi’s Prince-
ton Lectures in Analysis II: Complex Analysis, which is to prove that the entire function
f(z) = ez − z has an infinite number of zeros. If an analytic function that is not identically
zero has an infinite number of zeros then they are countable. Let {an} be the sequence of
zeros of f . What else can be said about the zeros? Prove one can at least say the following.

a.
∞∑
n=1

1
an(1−an)

= 1
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b.
∞∑
n=1

1
an(2πim−an)

= 0 where m is a nonzero integer

c.
∞∑
n=1

1
a2n

= −1

d.
∞∑
n=1

1
a3n

= −1
2
.

Solution by Hongwei Chen, Christopher Newport University.

Since the growth order of f(z) is 1 and f(0) = 1 ̸= 0, by the Hadamard’s factorization
theorem (See Stein and Shakarchi’s Complex Analysis, page 147), we have

ez − z = eaz+b

∞∏
n=1

(
1− z

an

)
ez/an ,

where a and b are constants.
Letting z = 0 gives eb = 1 and thus we may take b = 0. Applying the logarithmic

differentiation yields

ez − 1

ez − z
= a+

∞∑
n=1

(
1

z − an
+

1

an

)
= a+

∞∑
n=1

z

an(z − an)
. (1)

Letting z = 0 in (1) gives a = 0. Moreover, letting z = 1 and 2πim in (1), respectively
yields (a) and (b) as claimed.

Next, differentiating (1) with respect to z gives

ez(2− z)− 1

(ez − z)2
= −

∞∑
n=1

1

(z − an)2
. (2)

Now (c) follows by setting z = 0 in (2). Finally, differentiating (2) with respect to z gives

ez(z2 − 2z + 6) + e2z(z − 3)− 2

(ez − z)3
=

∞∑
n=1

2

(z − an)3
,

which implies (d) by letting z = 0.

#1409: Proposed by Ron Evans and Steven J. Miller (Williams College).
As mentioned in #1408, there is a long, rich history of trying to find which equations with
integer coefficients have integer solutions (and if there are solutions, determining them). (a)
Find all integer solutions to 3y2 +3y+1 = x3. (b) Prove that 12x3 − 3 is never a square for
x > 1.

Solution by Ivan Hadinata, Gadjah Mada University, Yogyakarta, Indonesia. Also solved by
Kenny B. Davenport, and by Dylan Laramee of Western New England, and by Katherine
Kuzniar of Saint Bonaventure University.
For the part (a), the only solutions are (x, y) = (1, 0) and (1,−1). It is trivial when y = 0
and y = −1, we get (x, y) = (1, 0), (1,−1). Otherwise, observe that

x3 = (y + 1)3 − y3. (2.1)
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The function f : R → R, f(x) = x3 is strictly increasing. By (2.1), it implies x > 0. If
y > 0, by Fermat last theorem there will be no solution for (x, y). If y < −1, so let y = −a
where a ∈ N and a ≥ 2, then (2.1) implies x3+(a−1)3 = a3. By Fermat last theorem, there
is no satisfying solution (x, a). Thus, the only solutions are (x, y) = (1, 0) and (1,−1).

For part (b), suppose the contrary that there exists b ∈ N0 so that 12x3 − 3 = b2 for some
integer x > 1. Since x > 1, it implies b > 3. Since 12x3 − 3 is odd and divisible by 3, then b
is in the form of 6k + 3 for some k ∈ N. Then

12x3 − 3 = b2 = 36k2 + 36k + 9 =⇒ x3 = (k + 1)3 − k3 (2.2)

By Fermat last theorem, there is no solution (x, k) ∈ N2 satisfying (2.2). Thus 12x3 − 3 is
not a square for all integers x > 1.

#1410: Proposed by Kenny B. Davenport, St Petersburg, Florida. The Pell numbers,
defined by P0 = 0, P1 = 1 and Pn+1 = 2Pn+Pn−1, are an interesting sequence of numbers with
numerous properties; they are one of the simplest generalizations of the Fibonacci recurrence
(same initial conditions but now Fn+1 = 1Fn + Fn−1), and arise as the denominators in the
sequence of the best rational approximations to

√
2. Not surprisingly, they satisfy a large

number of interesting relations. Prove

2
n∑

k=1

kPk−1 = nPn+1 − (n+ 1)Pn.

Note: depending on the path you take to the proof, you may be able to generate many other
additional identities, such as

2
n∑

k=1

k2Pk−1 = (n2 + 1)Pn+1 − (n2 + 2n)Pn − 1.

More generally, though you are only asked to prove the identity for the sum of k times Pk−1,
can you conjecture what the shape of the answer should be for the sum of kd times Pk−1?

Solution by G. C. Greubel, Newport News, VA. Also solved by Jackson Dry, St. Bonaventure
University, NY, and by Dylan Laramee, Lauren Mauch, and Luke Stefaniak of Western New
England.

First consider the series
n∑

k=0

tk =
1− tn+1

1− t

and by differentiating with respect to t it is determined that

S1(t) =
n∑

k=0

k tk−1 =
1− (n+ 1) tn + n tn+1

(1− t)2

S2(t) =
n∑

k=0

k2 tk−1 =
1 + t− (n+ 1)2 tn + (2n2 + 2n− 1) tn+1 − n2 tn+2

(1− t)3
.
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In the series S1(t) let t = {ap, bp}, where a = 1 +
√
2 and b = 1−

√
2, to obtain

n∑
k=0

k apn =
1− (n+ 1) apn + n apn+p

(1− ap)2

n∑
k=0

k bpn =
1− (n+ 1) bpn + n bpn+p

(1− bp)2
.

Using a general form Gn = Aan + B bn, with the property Gn+2 = 2Gn+1 +Gn, of the Pell
and Pell-Lucas numbers the last set of series can be added in such a way that the result
becomes

n∑
k=0

k Gpk+m =
1

(1 + (−1)p −Qp)2
[(Gm+p − 2 (−1)pGm +Gm−p)

−(n+ 1) (Gp(n+1)+m − 2 (−1)pGpn+m +Gp(n−1)+m)

+n (Gp(n+2)+m − 2 (−1)pGp(n+1)+m +Gpn+m)
]
,

where Qn is the nth Pell-Lucas number. For the case of p = 1 the reduction yields

2
n∑

k=0

k Gk+m = nGn+m+2 − (n+ 1)Gn+m+1 +Gm+1.

Letting Gn = {Pn, Qn} gives the series:

2
n∑

k=0

k Pk+m = nPn+m+2 − (n+ 1)Pn+m+1 + Pm+1

2
n∑

k=0

k Qk+m = nQn+m+2 − (n+ 1)Qn+m+1 +Qm+1

and if m = −1 then

2
n∑

k=0

k Pk−1 = nPn+1 − (n+ 1)Pn

2
n∑

k=0

k Qk−1 = nQn+1 − (n+ 1)Qn + 2.

Other series may be developed such as

2
n∑

k=0

k Gk+n = (n− 1)G2n+1 + nG2n +Gn+1.

Now considering the same pattern for S2(t) the main result becomes

(1 + (−1)p −Qp)
3

n∑
k=0

k2Gpk+m = −n2 ϕn+3 + (2n2 + 2n− 1)ϕn+2

− (n+ 1)2 ϕn+1 + ϕ2 + ϕ1,
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where

ϕn =
3∑

j=0

(
3

j

)
(−1)jpGp(n−j)+m.

When p = 1 the series reduces to

2
n∑

k=0

k2Gk+m = (n2 + 1)Gn+m+2 − n(n+ 2)Gn+m+1 −Gm+2.

Setting Gn = {Pn, Qn} and making choices for the value of m select series may be obtained
such as:

2
n∑

k=0

k2Gk+n = (n2 − 2n+ 1)G2n+1 + (n2 + 1)G2n −Gn+2

2
n∑

k=0

k2 Pk−2 = (n2 + 1)Pn − n(n+ 2)Pn−1

2
n∑

k=0

k2Qk−2 = (n2 + 1)Qn − n(n+ 2)Qn−1 − 2

2
n∑

k=0

k2 Pk−1 = (n2 + 1)Pn+1 − n(n+ 2)Pn − 1

2
n∑

k=0

k2Qk−1 = (n2 + 1)Qn+1 − n(n+ 2)Qn − 2.

For the general case consider the series

Sn,p(t) =
n∑

k=0

kp tk

for which the following can be found

Sn,p(t) = Sn+1,p(t)− (n+ 1)p tn+1

=
t

1− t

(
−(n+ 1)p tn+1 +

n∑
k=0

((k + 1)p − kp) tk

)

=
t

1− t

(
−(n+ 1)p tn+1 +

p−1∑
j=0

(
p

j

)
Sn,j(t)

)
.

Letting t = {ar, br}, multiplying by am, or bm, respectively, and adding the results of the
series it can be shown that

(Qr − 1− (−1)r)
n∑

k=0

kp Grk+m = (n+ 1)p (Gr(n+1)+m − (−1)r Grn+m)

−
p−1∑
j=0

(
p

j

) n∑
k=0

kj (Gr(k+1)+m − (−1)r Grn+m).
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This is a recursive series which means that each series with the weight kp needs to be
calculated before kp+1 can be obtained. In the case r = 1 the series becomes

2
n∑

k=0

kp Grk+m = (n+ 1)p (Gn+m+1 +Gn+m)

−
p−1∑
j=0

(
p

j

) n∑
k=0

kj (Gk+m+1 +Gn+m).

When r = p = 1 then

2
n∑

k=0

k Gk+m = (n+ 1) (Gn+m+2 −Gn+m+1)−
n∑

k=0

(Gk+m+1 +Gk+m)

= (n+ 1) (Gn+m+2 −Gn+m+1)−Gn+m+2 +Gm+1

= nGn+m+2 − (n+ 1)Gn+m+1 +Gm+1.

When r = 1 and p = 2 then

2
n∑

k=0

k2Gk+m = (n+ 1)2 (Gn+m+2 −Gn+m+1)−
n∑

k=0

(Gk+m+1 +Gk+m)

− 2
n∑

k=0

k (Gk+m+1 +Gk+m)

= (n2 + 1)Gn+m+2 − n (n+ 2)Gn+m+1 −Gm+2.

These series were presented earlier. The case of r = 1, and p = 3 gives

2
n∑

k=0

k3Gk+m = (n3 + 3n− 3)Gn+m+2 − (n3 + 3n2 + 1)Gn+m+1 +Gm+3 +Gm+2.

Further series can be developed in a similar pattern.

#1411: Proposed by Joe Santmyer, US Federal Government (retired).
With the aide of tables and technology (for example, Mathematica) show that

∞∑
i=0

i∑
j=0

(−1)i+j

(
i

j

)
Hj+1

j + 1
=

π2

12
.

Solution by Hongwei Chen, Christopher Newport University. Also solved by Kenny Daven-
port, and G. C. Greubel, Newport News, VA.

Let the proposed series be S. We first show that

Hj+1

j + 1
= −

∫ 1

0

xj ln(1− x) dx.
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This follows from∫ 1

0

xj ln(1− x) dx =

∫ 1

0

xj

(
−
∫ x

0

dt

1− t

)
dx

= −
∫ 1

0

1

1− t

(∫ 1

t

xj dx

)
dt = − 1

j + 1

∫ 1

0

1− tj+1

1− t
dt

= − 1

j + 1

∫ 1

0

(1 + t+ · · ·+ tj) dt = −Hj+1

j + 1
.

Hence

S = −
∞∑
i=0

(−1)i

(
i∑

j=0

(−1)j
(
i

j

)∫ 1

0

xj ln(1− x) dx

)

= −
∞∑
i=0

(−1)i
∫ 1

0

(
i∑

j=0

(−1)j
(
i

j

)
xj

)
ln(1− x) dx

= −
∞∑
i=0

(−1)i
∫ 1

0

(1− x)i ln(1− x) dx (use the binomial theorem)

= −
∞∑
i=0

(−1)i
∫ 1

0

xi lnx dx (use 1− x → x and
∫ 1

0
xn lnx dx = − 1

(n+1)2
)

=
∞∑
i=0

(−1)i

(i+ 1)2
=

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

#1412: Proposed by Joe Santmyer, US Federal Government (retired)
With the aide of tables and technology (for example, Mathematica) show that

∞∑
i=0

i∑
j=0

(−1)i+j

(
i

j

)
hj+1

j + 1
= [sinh−1(1)]2.

Solution G. C. Greubel, Newport News, VA.

First note that this solution will require a generating function for the Harmonic numbers
and the use of the dilogarithm function. The generating function for the Harmonic numbers,
Hn, is given by, [1],

∞∑
n=1

Hn x
n = − ln(1− x)

1− x
(2.3)

and the dilogarithm function, Li2(x), is defined by, [2, 3],

Li2(x) =
∞∑
n=1

xn

n2
= −

∫ x

0

ln(1− u)

u
du = −

∫ 1

0

ln(1− x t)

t
dt. (2.4)
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Some particular evaluations and properties of the dilogarithm function are:

Li2(0) = 0

Li2(1) = ζ(2) =
π2

6

Li2(−1) = −ζ(2)

2

Li2

(
1

2

)
=

ζ(2) + ln2(2)

2

Li2 = 2 (Li2(x) + Li2(−x)).

(2.5)

A series that will be used is
∞∑
n=0

(
n+ k

k

)
xn =

1

(1− x)k+1
(2.6)

which can be derived by taking k derivatives, with respect to x, of both sides of the series

∞∑
n=0

xn =
1

1− x
.

A property of shifting of index of a series

∞∑
n=0

n∑
k=0

an,k =
∞∑
n=0

∞∑
k=0

an+k,k

will also be used.
Begin by considering the series

g(x) =
∞∑
n=1

Hn

n
xn. (2.7)

Differentiation of g(x) leads to

g′(x) =
∞∑
n=1

Hn x
n−1 = − ln(1− x)

x (1− x)

= − ln(1− x)

x
− ln(1− x)

1− x
,

where the generating function of the Harmonic numbers was used. Integrating both sides
with respect to x, and making use of (2), leads to

g(x) =

∫ x

0

g′(u) du = −
∫ x

0

ln(1− u)

u
du−

∫ x

0

ln(1− u)

1− u
du

=

[
Li2(u) +

1

2
ln2(1− u)

]x
0

= Li2(x) +
1

2
ln2(1− x),

11



which can be stated as

g(x) =
∞∑
n=1

Hn x
n

n
= Li2(x) +

1

2
ln2(1− x). (2.8)

Let t → −t, in (6), to obtain

∞∑
n=1

(−1)n Hn t
n

n
= Li2(−t) +

1

2
ln2(1 + t). (2.9)

Adding series (6) and (7) gives

n∑
n=1

H2n t
2n

2n
= Li2(−t) + Li2(t) +

ln2(1 + t) + ln2(1− t)

2

or

n∑
n=1

H2n t
2n

n
=

1

2

(
Li2(t

2) + ln2(1− t2)− 2 ln(1− t) ln(1 + t)
)
. (2.10)

Letting t →
√
t, and making use of the property in (3), it is given that

n∑
n=1

H2n t
n

n
=

1

2

(
Li2(t) + ln2(1− t)− 2 ln(1−

√
t) ln(1 +

√
t)
)
. (2.11)

In this problem the series

hn =
n∑

k=1

1

2k − 1
= H2n −

1

2
Hn, (2.12)

where Hn is the nth harmonic number, is used. With this in mind, and with use of the
harmonic number series (6) and (9), it is noted that

∞∑
n=1

hn t
n

n
=

∞∑
n=1

(
H2n −

Hn

2

)
tn

n

=
1

4

(
ln2(1− t)− 4 ln(1−

√
t) ln(1 +

√
t)
)
. (2.13)

Now, consider the series

f(t) =
∞∑
n=0

n∑
k=0

(−1)n+k

(
n

k

)
hk+1 t

n

k + 1
. (2.14)
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in the following way:

f(t) =
∞∑
n=0

n∑
k=0

(−1)n+k

(
n

k

)
hk+1 t

n

k + 1

=
∞∑

n,k=0

(
n+ k

k

)
(−1)n hk+1 t

n+k

k + 1
by use of index shifting

=
∞∑
k=0

hk+1 t
k

k + 1
·

∞∑
n=0

(
n+ k

k

)
(−t)n

=
∞∑
k=0

hk+1 t
k

k + 1
· 1

(1 + t)k+1
by use of (4)

=
1

t

∞∑
k=0

hk+1

k + 1

(
t

1 + t

)k+1

=
1

t

∞∑
k=1

hk

k

(
t

1 + t

)k

.

This may also be seen as, with the use of (11),

f(t) =
1

t

∞∑
k=1

hk

k

(
t

1 + t

)k

=
1

t
ln2(

√
1 + t+

√
t)

and gives the expression
∞∑
n=0

n∑
k=0

(−1)n+k

(
n

k

)
hk+1 t

n

k + 1
=

1

t
ln2(

√
1 + t+

√
t). (2.15)

With this general form particular values of t may be considered. The specific value for the
proposed problem is When t = 1 for which

∞∑
n=0

n∑
k=0

(−1)n+k

(
n

k

)
hk+1

k + 1
= ln2(1 +

√
2) =

(
sinh−1(1)

)2
.

Other series may also be obtained from the main result. For instance when 2 t = −1 it is
determined that

∞∑
n=0

n∑
k=0

(−1)k
(
n

k

)
hk+1

2n (k + 1)
= −2 ln2

(
1 + i√

2

)
= −2 ln2

(
eπi/4

)
=

3 ζ(2)

4

and when 4 t = 1
∞∑
n=0

n∑
k=0

(−1)n+k

(
n

k

)
hk+1

4n (k + 1)
= 4 ln2(α),

where 2α = 1 +
√
5, α being the golden ratio. Another is the case for t = −1,

∞∑
n=0

n∑
k=0

(−1)k
(
n

k

)
hk+1

k + 1
= − ln2(i) =

3 ζ(2)

2
.
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GRE Practice #14: Let f : R+ → R+ satisfy f(f(x)) = 6x− f(x). Find f(x). (This is a
modification of Problem A5 from the 1988 Putnam Exan.)
(a) 6 + x (b) 6x (c) 2x (d) x− 2 (e) 3x.

The Putnam Problem asks for more – it asks to prove there is a unique function satisfying
the conditions above. We could try to use advanced theory to find f , but there’s no need.
We have a very simple relation, there can only be one multiple choice answer, and all we
have to do is check until we find one that works (or four that fail!). Thus, worse case, we
have to try four of the options. If we try (a) we get

f(f(x)) = f(6 + x) = 6 + (6 + x) = 12 + x,

which is not 6x− (6 + x) = 5x− 6. Moving to (b) we find

f(f(x) = f(6x) = 6(6x) = 36x,

which is not 6x− 6x = 0. Thus we continue to (c):

f(f(x)) = f(2x) = 2(2x) = 4x,

which is 6x−2x = 4x. Thus the answer is (c) and we only needed to check three items. Note
it was very fast to check; take advantage of the answer being in front of you! For a short
video on how to prove there is a unique function, see https://youtu.be/jZMoc3BrSZo.
Note we could check several possibilities at once by trying either ax (to handle (b), (c)

and (e)) and x+ b (to handle (a) and (d)), or ax+ b to handle all three!

Email address: sjm1@williams.edu

Professor of Mathematics, Department of Mathematics and Statistics, Williams College,
Williamstown, MA 01267
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